Top Qs
Timeline
Chat
Perspective

Hall–Petresco identity

Identity in group theory From Wikipedia, the free encyclopedia

Remove ads

In mathematics, the Hall–Petresco identity (sometimes misspelled Hall–Petrescu identity) is an identity holding in any group. It was introduced by Hall (1934) and Petresco (1954). It can be proved using the commutator collecting process, and implies that p-groups of small class are regular.

Statement

Summarize
Perspective

The Hall–Petresco identity states that if x and y are elements of a group G and m is a positive integer then

where each ci is in the subgroup Ki of the descending central series of G.

Remove ads

See also

References

  • Hall, Marshall (1959), The theory of groups, Macmillan, MR 0103215
  • Hall, Philip (1934), "A contribution to the theory of groups of prime-power order", Proceedings of the London Mathematical Society, 36: 29–95, doi:10.1112/plms/s2-36.1.29
  • Huppert, B. (1967), Endliche Gruppen (in German), Berlin, New York: Springer-Verlag, pp. 90–93, ISBN 978-3-540-03825-2, MR 0224703, OCLC 527050
  • Petresco, Julian (1954), "Sur les commutateurs", Mathematische Zeitschrift, 61 (1): 348–356, doi:10.1007/BF01181351, MR 0066380
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads