Top Qs
Timeline
Chat
Perspective

Hasse derivative

Mathematical concept From Wikipedia, the free encyclopedia

Remove ads

In mathematics, the Hasse derivative is a generalisation of the derivative which allows the formulation of Taylor's theorem in coordinate rings of algebraic varieties.

Definition

Summarize
Perspective

Let k[X] be a polynomial ring over a field k. The r-th Hasse derivative of Xn is

if nr and zero otherwise.[1] In characteristic zero we have

Remove ads

Properties

Summarize
Perspective

The Hasse derivative is a generalized derivation on k[X] and extends to a generalized derivation on the function field k(X),[1] satisfying an analogue of the product rule

and an analogue of the chain rule.[2] Note that the are not themselves derivations in general, but are closely related.

A form of Taylor's theorem holds for a function f defined in terms of a local parameter t on an algebraic variety:[3]

Remove ads

Notes

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads