Top Qs
Timeline
Chat
Perspective
Helly space
From Wikipedia, the free encyclopedia
Remove ads
In mathematics, and particularly functional analysis, the Helly space, named after Eduard Helly, consists of all monotonically increasing functions ƒ : [0,1] → [0,1], where [0,1] denotes the closed interval given by the set of all x such that 0 ≤ x ≤ 1.[1] In other words, for all 0 ≤ x ≤ 1 we have 0 ≤ ƒ(x) ≤ 1 and also if x ≤ y then ƒ(x) ≤ ƒ(y).
Let the closed interval [0,1] be denoted simply by I. We can form the space II by taking the uncountable Cartesian product of closed intervals:[2]
The space II is exactly the space of functions ƒ : [0,1] → [0,1]. For each point x in [0,1] we assign the point ƒ(x) in Ix = [0,1].[3]
Remove ads
Topology
The Helly space is a subset of II. The space II has its own topology, namely the product topology.[2] The Helly space has a topology; namely the induced topology as a subset of II.[1] It is normal Haudsdorff, compact, separable, and first-countable but not second-countable.
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads