Hexahedron

Polyhedron with 6 faces From Wikipedia, the free encyclopedia

A hexahedron (pl.: hexahedra or hexahedrons) or sexahedron (pl.: sexahedra or sexahedrons) is any polyhedron with six faces. A cube, for example, is a regular hexahedron with all its faces square, and three squares around each vertex.

There are seven topologically distinct convex hexahedra,[1] one of which exists in two mirror image forms. Additional non-convex hexahedra exist, with their number depending on how polyhedra are defined. Two polyhedra are "topologically distinct" if they have intrinsically different arrangements of faces and vertices, such that it is impossible to distort one into the other simply by changing the lengths of edges or the angles between edges or faces.

Convex

Summarize
Perspective

Cuboid

A hexahedron that is combinatorially equivalent to a cube may be called a cuboid, although this term is often used more specifically to mean a rectangular cuboid, a hexahedron with six rectangular sides. Different types of cuboids include the ones depicted and linked below.

More information Cuboids ...
Cuboids
Cube
(square)
Rectangular cuboid
(three pairs of
rectangles)
Trigonal trapezohedron
(congruent rhombi)
Trigonal trapezohedron
(congruent quadrilaterals)
Quadrilateral frustum
(apex-truncated
square pyramid)
Parallelepiped
(three pairs of
parallelograms)
Rhombohedron
(three pairs of
rhombi)
Close

Others

There are seven topologically distinct convex hexahedra,[1] the cuboid and six others, which are depicted below. One of these is chiral, in the sense that it cannot be deformed into its mirror image.

More information Image, Name ...
Image
Name Triangular bipyramid Pentagonal pyramid Doubly truncated tetrahedron[2]
Features
  • 5 vertices
  • 9 edges
  • 6 triangles
  • 6 vertices
  • 10 edges
  • 4 triangles
  • 2 quadrilaterals
  • 6 vertices
  • 10 edges
  • 5 triangles
  • 1 pentagon
  • 7 vertices
  • 11 edges
  • 2 triangles
  • 4 quadrilaterals
  • 7 vertices
  • 11 edges
  • 3 triangles
  • 2 quadrilaterals
  • 1 pentagon
  • 8 vertices
  • 12 edges
  • 2 triangles
  • 2 quadrilaterals
  • 2 pentagons
Properties Simplicial Dome
Close

Concave

Three further topologically distinct hexahedra can only be realised as concave acoptic polyhedra. These are defined as the surfaces formed by non-crossing simple polygon faces, with each edge shared by exactly two faces and each vertex surrounded by a cycle of three or more faces.[3]

More information Concave, 4.4.3.3.3.3 Faces 10 E, 6 V ...
Concave
Thumb Thumb Thumb
4.4.3.3.3.3 Faces
10 E, 6 V
5.5.3.3.3.3 Faces
11 E, 7 V
6.6.3.3.3.3 Faces
12 E, 8 V
Close

These cannot be convex because they do not meet the conditions of Steinitz's theorem, which states that convex polyhedra have vertices and edges that form 3-vertex-connected graphs.[4] For other types of polyhedra that allow faces that are not simple polygons, such as the spherical polyhedra of Hong and Nagamochi, more possibilities exist.[5]

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.