Top Qs
Timeline
Chat
Perspective
Hill tetrahedron
From Wikipedia, the free encyclopedia
Remove ads
In geometry, the Hill tetrahedra are a family of space-filling tetrahedra. They were discovered in 1896 by M. J. M. Hill, a professor of mathematics at the University College London, who showed that they are scissor-congruent to a cube.
Construction
For every , let be three unit vectors with angle between every two of them. Define the Hill tetrahedron as follows:
A special case is the tetrahedron having all sides right triangles, two with sides and two with sides . Ludwig Schläfli studied as a special case of the orthoscheme, and H. S. M. Coxeter called it the characteristic tetrahedron of the cubic spacefilling.
Remove ads
Properties
Generalizations
Summarize
Perspective
In 1951 Hugo Hadwiger found the following n-dimensional generalization of Hill tetrahedra:
where vectors satisfy for all , and where . Hadwiger showed that all such simplices are scissor congruent to a hypercube.
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads