The hydrolysis reaction for a hydrated metal ion in aqueous solution can be written as:
- p Mz+ + q H2O ⇌ Mp(OH)q(pz–q) + q H+
and the corresponding formation constant as:
![{\displaystyle \beta _{pq}={\frac {[M_{p}(OH)_{q}^{(pz-q)}][H^{+}]^{q}}{[M^{z+}]^{p}}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/aead0e368865ca9922bb9790890522b43cc23548)
and associated equilibria can be written as:
- MOx(OH)z–2x(s) + z H+ ⇌ Mz+ + (z–x) H2O
- MOx(OH)z–2x(s) + x H2O ⇌ Mz+ + z OH−
- p MOx(OH)z–2x(s) + (pz–q) H+ ⇌ Mp(OH)q(pz–q) + (pz–px–q) H2O
Aluminium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[1] |
Brown and Ekberg, 2016[2] |
Hummel and Thoenen, 2023[3] |
Al3+ + H2O ⇌ AlOH2+ + H+ |
–4.97 |
−4.98 ± 0.02 |
−4.98 ± 0.02 |
Al3+ + 2 H2O ⇌ Al(OH)2+ + 2 H+ |
–9.3 |
−10.63 ± 0.09 |
−10.63 ± 0.09 |
Al3+ + 3 H2O ⇌ Al(OH)3 + 3 H+ |
–15.0 |
−15.66 ± 0.23 |
−15.99 ± 0.23 |
Al3+ + 4 H2O ⇌ Al(OH)4– + 4 H+ |
–23.0 |
−22.91 ± 0.10 |
−22.91 ± 0.10 |
2 Al3+ + 2 H2O ⇌ Al2(OH)24+ + 2 H+ |
–7.7 |
−7.62 ± 0.11 |
−7.62 ± 0.11 |
3 Al3+ + 4 H2O ⇌ Al3(OH)45+ + 4 H+ |
–13.94 |
−14.06 ± 0.22 |
−13.90 ± 0.12 |
13 Al3+ + 28 H2O ⇌ Al13O4(OH)247+ + 32 H+ |
–98.73 |
−100.03 ± 0.09 |
−100.03 ± 0.09 |
α-Al(OH)3(s) + 3 H+ ⇌ Al3+ + 3 H2O |
8.5 |
7.75 ± 0.08 |
7.75 ± 0.08 |
γ-AlOOH(s) + 3 H+ ⇌ Al3+ + 2 H2O |
|
7.69 ± 0.15 |
9.4 ± 0.4 |
Close
Americium(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, NIST46 ...
Reaction |
NIST46[4] |
Brown and Ekberg, 2016[5] |
Grenthe et al, 2020[6] |
Am3+ + H2O ⇌ Am(OH)2+ + H+ |
–6.5 ± 0.1 |
–7.22 ± 0.03 |
–7.2 ± 0.5 |
Am3+ + 2 H2O ⇌ Am(OH)2+ + 2 H+ |
–14.1 ± 0.3 |
–14.9 ± 0.2 |
–15.1 ± 0.7 |
Am3+ + 3 H2O ⇌ Am(OH)3 + 3 H+ |
–25.7 |
–26.0 ± 0.2 |
–26.2 ± 0.5 |
Am3+ + 3 H2O ⇌ Am(OH)3(am) + 3 H+ |
–16.9 ± 0.1 |
–16.9 ± 0.8 |
–16.9 ± 0.8 |
Am3+ + 3 H2O ⇌ Am(OH)3(cr) + 3 H+ |
–15.2 |
–15.62 ± 0.04 |
–15.6 ± 0.6 |
Close
Americium(V)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Brown and Ekberg, 2016 ...
Reaction |
Brown and Ekberg, 2016[7] |
Grenthe et al, 2020[6] |
AmO2+ + H2O ⇌ AmO2(OH) + H+ |
–10.7 ± 0.2 |
|
AmO2+ + 2 H2O ⇌ AmO2(OH)2– + 2 H+ |
–22.9 ± 0.7 |
|
AmO2+ + H2O ⇌ AmO2(OH)(am) + H+ |
–5.4 ± 0.4 |
–5.3 ± 0.5 |
Close
Antimony(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[8] |
Lothenbach et al., 1999;[9]
Kitamura et al., 2010[10] |
Filella and May, 2003[11] |
Sb(OH)3 + H+ ⇌ Sb(OH)2+ + H2O |
1.41 |
1.30 |
1.371 |
Sb(OH)3 + H2O ⇌ Sb(OH)4‒ + H+ |
‒11.82 |
‒11.93 |
‒11.70 |
0.5 Sb2O3(s) + 1.5 H2O ⇌ Sb(OH)3 |
‒4.24 |
|
|
Sb2O3(rhombic,s) + 3 H2O ⇌ 2 Sb(OH)3 |
|
‒8.72 |
‒10.00 |
Sb2O3(cubic,s) + 3 H2O ⇌ 2 Sb(OH)3 |
|
|
‒11.40 |
Close
Antimony(V)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[8] |
Lothenbach et al., 1999;[9] Kitamura et al., 2010[10] |
Sb(OH)5 + H2O ⇌ Sb(OH)6‒ + H+ |
‒2.72 |
‒2.72 |
12 Sb(OH)5 + 4 H2O ⇌ Sb12(OH)644‒ + 4 H+ |
20.34 |
20.34 |
12 Sb(OH)5 + 5 H2O ⇌ Sb12(OH)655‒ + 5 H+ |
16.72 |
16.72 |
12 Sb(OH)5 + 6 H2O ⇌ Sb12(OH)666‒ + 6 H+ |
11.89 |
11.89 |
12 Sb(OH)5 + 7 H2O ⇌ Sb12(OH)677‒ + 7 H+ |
6.07 |
6.07 |
0.5 Sb2O5(s) + 2.5 H2O ⇌ Sb(OH)5 |
‒3.7 |
|
Sb2O5(am) + 5 H2O ⇌ 2 Sb(OH)5 |
|
‒7.400 |
Close
Arsenic(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[12] |
Nordstrom and Archer, 2003[13] |
Nordstrom et al., 2014[14] |
As(OH)4‒ + H+ ⇌ As(OH)3 + H2O |
9.29 |
9.17 |
9.24 ± 0.02 |
Close
Arsenic(V)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer ...
Reaction |
Baes and Mesmer[12] |
Khodakovsky et al. (1968)[15] |
Nordstrom and Archer, 2003[13] |
Nordstrom et al., 2014[14] |
H2AsO4‒ + H+ ⇌ H3AsO4 |
2.24 |
2.21 |
2.26 ± 0.078 |
2.25 ± 0.04 |
HAsO42‒ + H+ ⇌ H2AsO4‒ |
|
6.93 |
6.99 ± 0.1 |
6.98 ± 0.11 |
AsO43‒ + H+ ⇌ HAsO42‒ |
|
11.51 |
11.80 ± 0.1 |
11.58 ± 0.05 |
HAsO42‒ + 2 H+ ⇌H3AsO4 |
9.20 |
|
|
|
AsO43‒ + 3 H+ ⇌ H3AsO4 |
20.70 |
|
|
|
Close
Barium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[16] |
Nordstrom et al., 1990[17] |
Brown and Ekberg, 2016[18] |
Ba2+ + H2O ⇌ BaOH+ + H+ |
–13.47 |
–13.47 |
–13.32 ± 0.07 |
Close
Berkelium(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Brown and Ekberg, 2016 ...
Reaction |
Brown and Ekberg, 2016[19] |
Bk3+ + 3 H2O ⇌ Bk(OH)3(s) + 3 H+ |
–13.5 ± 1.0 |
Close
Beryllium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[20] |
Be2+ + H2O ⇌ BeOH+ + H+ |
–5.10 |
Be2+ + 2 H2O ⇌ Be(OH)2 + 2 H+ |
–23.65 |
Be2+ + 3 H2O ⇌ Be(OH)3– + 3 H+ |
–23.25 |
Be2+ + 4 H2O ⇌ Be(OH)42– + 4 H+ |
–37.42 |
2 Be2+ + H2O ⇌ Be2OH3+ + H+ |
–3.97 |
3 Be2+ + 3 H2O ⇌ Be3(OH)33+ + 3 H+ |
–8.92 |
6 Be2+ + 8 H2O ⇌ Be6(OH)84+ + 8 H+ |
–27.2 |
α-Be(OH)2(cr) + 2 H+ ⇌ Be2+ + 2 H2O |
6.69 |
Close
Bismuth
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[21] |
Lothenbach et
al., 1999[9] |
NIST46[4] |
Kitamura et
al., 2010[10] |
Brown and
Ekberg, 2016[22] |
Bi3+ + H2O ⇌ BiOH2+ + H+ |
–1.0 |
–0.92 |
–1.1 |
–0.920 |
–0.92 ± 0.15 |
Bi3+ + 2 H2O ⇌ Bi(OH)2+ + 2 H+ |
(–4) |
–2.56 |
–4.5 |
–2.560 ± 1.000 |
–2.59 ± 0.26 |
Bi3+ + 3 H2O ⇌ Bi(OH)3 + 3 H+ |
–8.86 |
–5.31 |
–9.0 |
–8.940 ± 0.500 |
–8.78 ± 0.20 |
Bi3+ + 4 H2O ⇌ Bi(OH)4– + 4 H+ |
–21.8 |
–18.71 |
–21.2 |
–21.660 ± 0.870 |
–22.06 ± 0.14 |
3 Bi3+ + 4 H2O ⇌ Bi3(OH)45+ + 4 H+ |
|
–0.80 |
|
–0.800 |
|
6 Bi3+ + 12 H2O ⇌ Bi6(OH)126+ + 12 H+ |
|
1.34 |
|
1.340 |
0.98 ± 0.13 |
9 Bi3+ + 20 H2O = Bi9(OH)207+ + 20 H+ |
|
–1.36 |
|
–1.360 |
|
9 Bi3+ + 21 H2O = Bi9(OH)216+ + 21 H+ |
|
–3.25 |
|
–3.250 |
|
9 Bi3+ + 22 H2O = Bi9(OH)225+ + 22 H+ |
|
–4.86 |
|
–4.860 |
|
Bi(OH)3(am) + 3 H+ = Bi3+ + 3 H2O |
|
|
|
31.501 ± 0.927 |
|
α-Bi2O3(cr) + 6 H+ = 2 Bi3+ + 3 H2O |
|
0.76 |
|
|
|
BiO1.5(s, α) + 3 H+ = Bi3+ + 1.5 H2O |
3.46 |
|
|
31.501 ± 0.927 |
2.88 ± 0.64 |
Close
Boron
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[23] |
NIST46[4] |
B(OH)3 + H2O ⇌ Be(OH)4+ + H+ |
–9.236 |
–9.236 ± 0.002 |
2 B(OH)3 ⇌ B2(OH)5– + H+ |
–9.36 |
–9.306 |
3 B(OH)3 ⇌ B3O3(OH)4– + H+ + 2 H2O |
–7.03 |
–7.306 |
4 B(OH)3 ⇌ B4O5(OH)42– + 2 H+ + 3 H2O |
–16.3 |
–15.032 |
Close
Cadmium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[24] |
Powell et al., 2011[25] |
Brown and Ekberg, 2016[26] |
Cd2+ + H2O ⇌ CdOH+ + H+ |
−10.08 |
–9.80 ± 0.10 |
−9.81 ± 0.10 |
Cd2+ + 2 H2O ⇌ Cd(OH)2 + 2 H+ |
–20.35 |
–20.19 ± 0.13 |
−20.6 ± 0.4 |
Cd2+ + 3 H2O ⇌ Cd(OH)3– + 3 H+ |
<–33.3 |
–33.5 ± 0.5 |
−33.5 ± 0.5 |
Cd2+ + 4 H2O ⇌ Cd(OH)42– + 4 H+ |
–47.35 |
–47.28 ± 0.15 |
−47.25 ± 0.15 |
2 Cd2+ + H2O ⇌ Cd2OH3+ + H+ |
–9.390 |
–8.73 ± 0.01 |
−8.74 ± 0.10 |
4 Cd2+ + 4 H2O ⇌ Cd4(OH)44+ + H+ |
–32.85 |
|
|
Cd(OH)2(s) ⇌ Cd2+ + 2 OH– |
|
–14.28 ± 0.12 |
|
Cd(OH)2(s) + 2 H+ ⇌ Cd2+ + 2 H2O |
13.65 |
13.72 ± 0.12 |
13.71 ± 0.12 |
Close
Calcium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[16] |
Nordstrom et al., 1990[17] |
Brown and Ekberg, 2016[27] |
Ca2+ + H2O ⇌ CaOH+ + H+ |
–12.85 |
–12.78 |
–12.57 ± 0.03 |
Ca(OH)2(cr) + 2 H+ ⇌ Ca2+ + 2 H2O |
22.80 |
22.8 |
22.75 ± 0.02 |
Close
Californium(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Brown and Ekberg, 2016 ...
Reaction |
Brown and Ekberg, 2016[19] |
Cf3+ + 3 H2O ⇌ Bk(OH)3(s) + 3 H+ |
–13.0 ± 1.0 |
Close
Cerium(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[28] |
NIST46[4] |
Brown and Ekberg, 2016[29] |
Ce3+ + H2O ⇌ CeOH2+ + H+ |
–8.3 |
–8.3 |
–8.31 ± 0.03 |
2 Ce3+ + 2 H2O ⇌ Ce2(OH)24+ + 2 H+ |
|
|
–16.0 ± 0.2 |
3 Ce3+ + 5 H2O ⇌ Ce3(OH)54+ + 5 H+ |
|
|
–34.6 ± 0.3 |
Ce(OH)3(s) + 3 H+ ⇌ Ce3+ + 3 H2O |
|
|
18.5 ± 0.5 |
Ce(OH)3(s) ⇌ Ce3+ + 3 OH– |
|
–22.1 ± 0.9 |
|
Close
Chromium(II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K (The divalent state is unstable in water, producing hydrogen whilst being oxidised to a higher valency state (Baes and Mesmer, 1976). The reliability of the data is in doubt.):
More information Reaction, NIST46 ...
Reaction |
NIST46[4] |
Ball and Nordstrom, 1988[30] |
Cr2+ + H2O ⇌ CrOH+ + H+ |
–5.5 |
|
Cr(OH)2(s) ⇌ Cr2+ + 2 OH– |
|
–17 ± 0.02 |
Close
Chromium(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[31] |
Rai et al., 1987[32] |
Ball and Nordstrom, 1988[30] |
Brown and Ekberg, 2016[33] |
Cr3+ + H2O ⇌ CrOH2+ + H+ |
–4.0 |
–3.57 ± 0.08 |
|
–3.60 ± 0.07 |
Cr3+ + 2 H2O ⇌ Cr(OH)2+ + 2 H+ |
–9.7 |
–9.84 |
|
–9.65 ± 0.20 |
Cr3+ + 3 H2O ⇌ Cr(OH)3 + 3 H+ |
–18 |
–16.19 |
|
–16.25 ± 0.19 |
Cr3+ + 4 H2O ⇌ Cr(OH)4− + 4 H+ |
–27.4 |
–27.65 ± 0.12 |
|
–27.56 ± 0.21 |
2 Cr3+ + 2 H2O ⇌ Cr2(OH)24+ + 2 H+ |
–5.06 |
–5.0 |
|
–5.29 ± 0.16 |
3 Cr3+ + 4 H2O ⇌ Cr3(OH)45+ + 4 H+ |
–8.15 |
–10.75 ± 0.15 |
|
–9.10 ± 0.14 |
Cr(OH)3(s) + 3 H+ ⇌ Cr3+ + 3 H2O |
12 |
|
9.35 |
9.41 ± 0.17 |
Cr2O3(s) + 6 H+ ⇌ 2 Cr3+ + 3 H2O |
|
|
8.52 |
|
CrO1.5(s) + 3 H+ ⇌ Cr3+ + 1.5 H2O |
|
|
|
7.83 ± 0.10 |
Close
Chromium(VI)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[34] |
Ball and Nordstrom, 1998[30] |
CrO42– + H+ ⇌ HCrO4– |
6.51 |
6.55 ± 0.04 |
HCrO4– + H+ ⇌ H2CrO4 |
–0.20 |
|
CrO42– + 2 H+ ⇌ H2CrO4 |
|
6.31 |
2 HCrO4– ⇌ Cr2O72– + H2O |
1.523 |
|
2 CrO42– + 2 H+ ⇌ Cr2O72– + H2O |
|
14.7 ± 0.1 |
Close
Cobalt(II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[35] |
Brown and Ekberg, 2016[36] |
Co2+ + H2O ⇌ CoOH+ + H+ |
–9.65 |
−9.61 ± 0.17 |
Co2+ + 2 H2O ⇌ Co(OH)2 + 2 H+ |
–18.8 |
−19.77 ± 0.11 |
Co2+ + 3 H2O ⇌ Co(OH)3– + 3 H+ |
–31.5 |
−32.01 ± 0.33 |
Co2+ + 4 H2O ⇌ Co(OH)42– + 4 H+ |
–46.3 |
|
2 Co2+ + H2O ⇌ Co2(OH)3+ + H+ |
–11.2 |
|
4 Co2+ + 4 H2O ⇌ Co4(OH)44+ + 4H+ |
–30.53 |
|
Co(OH)2(s) + 2 H+ ⇌ Co2+ + 2 H2O |
12.3 |
13.24 ± 0.12 |
CoO(s) + 2 H+ ⇌ Co2+ + H2O |
|
13.71 ± 0.10 |
Close
Cobalt(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Brown and Ekberg, 2016 ...
Reaction |
Brown and Ekberg, 2016[37] |
Co3+ + H2O ⇌ CoOH2+ + H+ |
−1.07 ± 0.11 |
Close
Copper(I)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Brown and Ekberg, 2016 ...
Reaction |
Brown and Ekberg, 2016[38] |
Cu+ + H2O ⇌ CuOH + H+ |
–7.8 ± 0.4 |
Cu+ + 2 H2O ⇌ Cu(OH)2– + 2 H+ |
–18.6 ± 0.6 |
Close
Copper(II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[39] |
NIST46[4] |
Plyasunova et al., 1997[40] |
Powell et al., 2007[41] |
Brown and Ekberg, 2016[38] |
Cu2+ + H2O ⇌ CuOH+ + H+ |
< –8 |
–7.7 |
–7.97 ± 0.09 |
–7.95 ± 0.16 |
–7.64 ± 0.17 |
Cu2+ + 2 H2O ⇌ Cu(OH)2 + 2 H+ |
(< –17.3) |
–17.3 |
–16.23 ± 0.15 |
–16.2 ± 0.2 |
–16.24 ± 0.03 |
Cu2+ + 3 H2O ⇌ Cu(OH)3– + 3 H+ |
(< –27.8) |
–27.8 |
–26.63 ± 0.40 |
–26.60 ± 0.09 |
–26.65 ± 0.13 |
Cu2+ + 4 H2O ⇌ Cu(OH)42– + 4 H+ |
–39.6 |
–39.6 |
–39.73 ± 0.17 |
–39.74 ± 0.18 |
–39.70 ± 0.19 |
2 Cu2+ + H2O ⇌ Cu2(OH)3+ + H+ |
|
|
–6.71 ± 0.30 |
–6.40 ± 0.12 |
–6.41 ± 0.17 |
2 Cu2+ + 2 H2O ⇌ Cu2(OH)22+ + 2 H+ |
–10.36 |
–10.3 |
–10.55 ± 0.17 |
–10.43 ± 0.07 |
–10.55 ± 0.02 |
3 Cu2+ + 4 H2O ⇌ Cu3(OH)42+ + 4 H+ |
|
|
–20.95 ± 0.30 |
–21.1 ± 0.2 |
–21.2 ± 0.4 |
CuO(s) + 2 H+ ⇌ Cu2+ + H2O |
7.62 |
|
7.64 ± 0.06 |
7.64 ± 0.06 |
7.63 ± 0.05 |
Cu(OH)2(s) + 2 H+ ⇌ Cu2+ + 2 H2O |
|
|
|
8.67 ± 0.05 |
8.68 ± 0.10 |
Close
Curium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Brown and Ekberg, 2016 ...
Reaction |
Brown and Ekberg, 2016[42] |
Cm3+ + H2O ⇌ Cm(OH)2+ + H+ |
−7.66 ± 0.07 |
Cm3+ + 2 H2O ⇌ Cm(OH)2+ + 2 H+ |
−15.9 ± 0.1 |
Cm3+ + 3 H2O ⇌ Cm(OH)3(s) + 3 H+ |
−13.9 ± 0.4 |
Close
Dysprosium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[28] |
Brown and Ekberg, 2016[43] |
Dy3+ + H2O ⇌ DyOH2+ + H+ |
−8.0 |
−7.53 ± 0.14 |
Dy3+ + 2 H2O ⇌ Dy(OH)2+ + 2 H+ |
(–16.2) |
|
Dy3+ + 3 H2O ⇌ Dy(OH)3 + 3 H+ |
(–24.7) |
|
Dy3+ + 4 H2O ⇌ Dy(OH)4− + 4 H+ |
–33.5 |
|
2 Dy3+ + 2 H2O ⇌ Dy2(OH)24+ + 2 H+ |
|
−13.76 ± 0.20 |
3 Dy3+ + 5 H2O ⇌ Dy3(OH)54+ + 5 H+ |
|
−30.6 ± 0.3 |
Dy(OH)3(s) + 3 H+ ⇌ Dy3+ + 3 H2O |
15.9 |
16.26 ± 0.30 |
Dy(OH)3(c) + OH− ⇌ Dy(OH)4− |
−3.6 |
|
Dy(OH)3(c) ⇌ Dy(OH)3 |
−8.8 |
|
Close
Erbium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[28] |
Brown and Ekberg, 2016[44] |
Er3+ + H2O ⇌ ErOH2+ + H+ |
−7.9 |
−7.46 ± 0.09 |
Er3+ + 2 H2O ⇌ Er(OH)2+ + 2 H+ |
(−15.9) |
|
Er3+ + 3 H2O ⇌ Er(OH)3 + 3 H+ |
(−24.2) |
|
Er3+ + 4 H2O ⇌ Er(OH)4− + 4 H+ |
−32.6 |
|
2 Er3+ + 2 H2O ⇌ Er2(OH)24+ + 2 H+ |
−13.65 |
−13.50 ± 0.20 |
3 Er3+ + 5 H2O ⇌ Er3(OH)54+ + 5 H+ |
<−29.3 |
−31.0 ± 0.3 |
Er(OH)3(s) + 3 H+ ⇌ Er3+ + 3 H2O |
15.0 |
15.79 ± 0.30 |
Er(OH)3(c) + OH− ⇌ Er(OH)4− |
−3.6 |
|
Er(OH)3(c) ⇌ Er(OH)3 |
~ −9.2 |
|
Close
Europium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[28] |
NIST46[4] |
Hummel et al., 2002[45] |
Brown and Ekberg, 2016[29] |
Eu3+ + H2O ⇌ EuOH2+ + H+ |
–7.8 |
|
–7.64 ± 0.04 |
–7.66 ± 0.05 |
Eu3+ + 2 H2O ⇌ Eu(OH)2+ + 2 H+ |
|
|
–15.1 ± 0.2 |
|
Eu3+ + 3 H2O ⇌ Eu(OH)3 + 3 H+ |
|
|
–23.7 ± 0.1 |
|
Eu3+ + 4 H2O ⇌ Eu(OH)4− + 4 H+ |
|
|
–36.2 ± 0.5 |
|
2 Eu3+ + 2 H2O ⇌ Eu2(OH)24+ + 2 H+ |
|
|
- |
–14.1 ± 0.2 |
3 Eu3+ + 5 H2O ⇌ Eu3(OH)54+ + 5 H+ |
|
|
- |
–32.0 ± 0.3 |
Eu(OH)3(s) + 3 H+ ⇌ Eu3+ + 3 H2O |
17.5 |
|
17.6 ± 0.8 (am)
14.9 ± 0.3 (cr) |
16.48 ± 0.30 |
Eu(OH)3(s) ⇌ Eu3+ + 3 OH– |
|
–24.5 ± 0.7 (am)
–26.5 (cr) |
|
|
Close
Gadolinium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[28] |
Brown and Ekberg, 2016[46] |
Gd3+ + H2O ⇌ GdOH2+ + H+ |
–8.0 |
–7.87 ± 0.05 |
Gd3+ + 2 H2O ⇌ Gd(OH)2+ + 2 H+ |
(–16.4) |
|
Gd3+ + 3 H2O ⇌ Gd(OH)3 + 3 H+ |
(–25.2) |
|
Gd3+ + 4 H2O ⇌ Gd(OH)4– + 4 H+ |
–34.4 |
|
2 Gd3+ + 2 H2O ⇌ Gd2(OH)24+ + 2 H+ |
|
–14.16 ± 0.20 |
3 Gd3+ + 5 H2O ⇌ Gd3(OH)54+ + 5 H+ |
|
–33.0 ± 0.3 |
Gd(OH)3(s) + 3 H+ ⇌ Gd3+ + 3 H2O |
15.6 |
17.20 ± 0.48 |
Gd(OH)3(c) + OH– ⇌ Gd(OH)4– |
–4.8 |
|
Gd(OH)3(c) ⇌ Gd(OH)3 |
–9.6 |
|
Close
Gallium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information
...
Reaction |
Baes and Mesmer, 1976[47] |
Smith et al., 2003[48] |
Brown and Ekberg, 2016[49] |
Ga3+ + H2O ⇌ GaOH2+ + H+ |
–2.6 |
–2.897 |
–2.74 |
Ga3+ + 2 H2O ⇌ Ga(OH)2+ + 2 H+ |
–5.9 |
–6.694 |
–7.0 |
Ga3+ + 3 H2O ⇌ Ga(OH)3 + 3 H+ |
–10.3 |
|
–11.96 |
Ga3+ + 4 H2O ⇌ Ga(OH)4– + 4 H+ |
–16.6 |
–16.588 |
–15.52 |
Ga(OH)3(s) ⇌ Ga3+ + 3 OH– |
–37 |
–37.0 |
|
GaO(OH)(s) + H2O ⇌ Ga3+ + 3 OH– |
–39.06 |
–39.1 |
–40.51 |
Close
Germanium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[50] |
Wood and Samson, 2006[51] |
Filella and May, 2023[52] |
Ge(OH)4 ⇌ GeO(OH)3− + H+ |
–9.31 |
–9.32 ± 0.05 |
–9.099 |
Ge(OH)4 ⇌ GeO2(OH)22+ + 2 H+ |
–21.9 |
|
|
GeO2(OH)22– + H+ ⇌ GeO(OH)3– |
|
|
12.76 |
8 Ge(OH)4 ⇌ Ge8O16(OH)33- + 13 H2O + 3 H+ |
–14.24 |
|
|
8 Ge(OH)4 + 3 OH– ⇌ Ge8(OH)353– |
|
|
28.33 |
GeO2(s, hexa) + 2 H2O ⇌ Ge(OH)4 |
|
–1.35 |
–1.373 |
GeO2(s, tetra) + 2 H2O ⇌ Ge(OH)4 |
-4.37 |
–5.02 |
–4.999 |
Close
Gold(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[53] |
Au(OH)3 +2 H+ ⇌ AuOH2+ + 2 H2O |
1.51 |
Au(OH)3 + H+ ⇌ Au(OH)2+ + H2O |
< 1.0 |
Au(OH)3 + H2O ⇌ Au(OH)4– + H+ |
–11.77 |
Au(OH)3 + 2 H2O ⇌ Au(OH)52– + 2 H+ |
–25.13 |
Au(OH)52– + 3 H2O ⇌ Au(OH)63– + 3 H+ |
< –41.1 |
Au(OH)3(c) ⇌ Au(OH)3 |
–5.51 |
Close
Hafnium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[54] |
Brown and Ekberg, 2016[55] |
Hf4+ + H2O ⇌ HfOH3+ + H+ |
–0.25 |
−0.26 ± 0.10 |
Hf4+ + 2 H2O ⇌ Hf(OH)22+ + 2 H+ |
(–2.4) |
|
Hf4+ + 3 H2O ⇌ Hf(OH)3+ + 3 H+ |
(–6.0) |
|
Hf4+ + 4 H2O ⇌ Hf(OH)4 + 4 H+ |
–10.7* |
−3.75 ± 0.34* |
Hf4+ + 5 H2O ⇌ Hf(OH)5– + 5 H+ |
–17.2 |
|
3 Hf4+ + 4 H2O ⇌ Hf3(OH)48+ + 4 H+ |
|
0.55 ± 0.30 |
4 Hf4+ + 8 H2O ⇌ Hf4(OH)88+ + 8 H+ |
|
6.00 ± 0.30 |
HfO2(s) + 4 H+ ⇌ Hf4+ + 2 H2O |
–1.2* |
–5.56 ± 0.15* |
HfO2(am) + 4 H+ ⇌ Hf4+ + 2 H2O |
|
–3.11 ± 0.20 |
Close
*Errors in compilations concerning equilibrium and/or data elaboration. Data not recommended. Strongly suggested to refer to the original papers.
Holmium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[28] |
Brown and Ekberg, 2016[56] |
Ho3+ + H2O ⇌ HoOH2+ + H+ |
−8.0 |
−7.43 ± 0.05 |
2 Ho3+ + 2 H2O ⇌ Ho2(OH)24+ + 2 H+ |
|
−13.5 ± 0.2 |
3 Ho3+ + 5 H2O ⇌ Ho3(OH)54+ + 5 H+ |
|
−30.9 ± 0.3 |
Ho(OH)3(s) + 3 H+ ⇌ Ho3+ + 3 H2O |
15.4 |
15.60 ± 0.30 |
Close
Indium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[57] |
NIST46[4] |
Brown and Ekberg, 2016[58] |
In3+ + H2O ⇌ InOH2+ + H+ |
–4.00 |
–3.927 |
–3.96 |
In3+ + 2 H2O ⇌ In(OH)2+ + 2 H+ |
–7.82 |
–7.794 |
–9.16 |
In3+ + 3 H2O ⇌ In(OH)3 + 3 H+ |
–12.4 |
–12.391 |
|
In3+ + 4 H2O ⇌ In(OH)4– + 4 H+ |
–22.07 |
–22.088 |
–22.05 |
In(OH)3(s) ⇌ In3+ + 3 OH– |
–36.92 |
–36.9 |
–36.92 |
1/2 In2O3(s) + 3/2 H2O ⇌ In3+ + 3 OH– |
|
|
–35.24 |
Close
Iridium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Brown and Ekberg, 2016 ...
Reaction |
Brown and Ekberg, 2016[59] |
Ir3+ + H2O ⇌ IrOH2+ + H+ |
‒3.77 ± 0.10 |
Ir3+ + 2 H2O ⇌ Ir(OH)2+ + 2 H+ |
‒8.46 ± 0.20 |
Ir(OH)3(s) + 3 H+ ⇌ Ir3+ + 3 H2O |
8.88 ± 0.20 |
Close
Iron(II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[60] |
Nordstrom et al., 1990[17] |
Hummel et al., 2002[45] |
Lemire et al., 2013[61] |
Brown and Ekberg, 2016[62] |
Fe2+ + H2O ⇌ FeOH+ + H+ |
–9.3 |
–9.5 |
–9.5 |
–9.1 ± 0.4 |
−9.43 ± 0.10 |
Fe2+ + 2 H2O ⇌ Fe(OH)2 + 2 H+ |
–20.5 |
|
|
|
−20.52 ± 0.08 |
Fe2+ + 3 H2O ⇌ Fe(OH)3− + 3 H+ |
–29.4 |
|
|
|
−32.68 ± 0.15 |
Fe(OH)2(s) +2 H+ ⇌ Fe2+ + 2 H2O |
|
|
|
|
12.27 ± 0.88 |
Close
Iron(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[60] |
Lemire et al., 2013[61] |
Brown and Ekberg, 2016[63] |
Fe3+ + H2O ⇌ FeOH2+ + H+ |
–2.19 |
−2.15 ± 0.07 |
–2.20 ± 0.02 |
Fe3+ + 2 H2O ⇌ Fe(OH)2+ + 2 H+ |
–5.67 |
−4.8 ± 0.4 |
–5.71 ± 0.10 |
Fe3+ + 3 H2O ⇌ Fe(OH)3 + 3 H+ |
<–12 |
<–14 |
–12.42 ± 0.20 |
Fe3+ + 4 H2O ⇌ Fe(OH)4– + 4 H+ |
–21.6 |
−21.5 ± 0.5 |
–21.60 ± 0.23 |
2 Fe3+ + 2 H2O ⇌ Fe2(OH)24+ + 2 H+ |
–2.95 |
–2.91 ± 0.07 |
–2.91 ± 0.07 |
3 Fe3+ + 4 H2O ⇌ Fe3(OH)45+ + 4 H+ |
–6.3 |
|
−6.3 ± 0.1 |
Fe(OH)3(s) +3 H+ ⇌ Fe3+ + 3 H2O
2-line ferrihydrite |
2.5 |
3.5 |
3.50 ± 0.20 |
Fe(OH)3(s) ⇌ Fe3+ + 3 OH−
6-line ferrihydrite |
|
−38.97 ± 0.64 |
|
α-FeOOH(s)+ 3 H+ ⇌ Fe3+ + 2 H2O
goethite |
0.5 |
|
0.33 ± 0.10 |
α-FeOOH + H2O ⇌ Fe3+ + 3 OH−
goethite |
|
−41.83 ± 0.37 |
|
0.5 α-Fe2O3(s)+ 3 H+ ⇌ Fe3+ + 1.5 H2O
hematite |
|
|
0.36 ± 0.40 |
0.5 α-Fe2O3 + 1.5 H2O ⇌ Fe3+ + 3 OH−
hematite |
|
−42.05 ± 0.26 |
|
0.5 γ-Fe2O3(s) + 3 H+ ⇌ Fe3+ + 1.5 H2O
maghemite |
|
|
1.61 ± 0.61 |
0.5 γ-Fe2O3 + 1.5 H2O ⇌ Fe3+ + 3 OH−
maghemite |
|
−40.59 ± 0.29 |
|
α-FeOOH(s)+ 3 H+ ⇌ Fe3+ + 2 H2O
goethite |
|
|
1.85 ± 0.37 |
γ-FeOOH + H2O ⇌ Fe3+ + 3 OH−
lepidocrocite |
|
−40.13 ± 0.37 |
|
Fe(OH)3(s) + 3 H+ ⇌ Fe3+ + 3 H2O
magnetite |
|
|
−12.26 ± 0.26 |
Close
Lanthanum
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[64] |
Brown and Ekberg, 2016[29] |
La3+ + H2O ⇌ LaOH2+ + H+ |
–8.5 |
–8.89 ± 0.10 |
2 La3+ + 2 H2O ⇌ La2(OH)24+ + 2 H+ |
≤ –17.5 |
–17.57 ± 0.20 |
3 La3+ + 5 H2O ⇌ La3(OH)54+ + 5 H+ |
≤ –38.3 |
–37.8 ± 0.3 |
5 La3+ + 9 H2O ⇌ La5(OH)96+ + 9 H+ |
–71.2 |
|
La(OH)3(s) + 3 H+ ⇌ La3+ + 3 H2O |
20.3 |
19.72 ± 0.34 |
Close
Lead(II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[65] |
NIST46[4] |
Powell et al, 2009[66] |
Brown and Ekberg, 2016[29] |
Cataldo et al., 2018[67] |
Pb2+ + H2O ⇌ PbOH+ + H+ |
–7.71 |
–7.6 |
–7.46 ± 0.06 |
–7.49 ± 0.13 |
–6.47± 0.03 |
Pb2+ + 2 H2O ⇌ Pb(OH)2 + 2 H+ |
–17.12 |
–17.1 |
–16.94 ± 0.09 |
–16.99 ± 0.06 |
–16.12 ± 0.01 |
Pb2+ + 3 H2O ⇌ Pb(OH)3- + 3 H+ |
–28.06 |
–28.1 |
–28.03± 0.06 |
–27.94 ± 0.21 |
–28.4 ± 0.1 |
Pb2+ + 4 H2O ⇌ Pb(OH)42- + 4 H+ |
|
|
–40.8 |
|
|
2 Pb2+ + H2O ⇌ Pb2(OH)3+ + H+ |
–6.36 |
–6.4 |
–7.28± 0.09 |
–6.73 ± 0.31 |
|
3 Pb2+ + 4 H2O ⇌ Pb3(OH)42+ + 4 H+ |
–23.88 |
–23.9 |
–23.01 ± 0.07 |
–23.43 ± 0.10 |
|
3 Pb2+ + 5 H2O ⇌ Pb3(OH)5+ + 5 H+ |
|
|
|
–31.11 ± 0.10 |
|
4 Pb2+ + 4 H2O ⇌ Pb4(OH)44+ + 4 H+ |
–20.88 |
–20.9 |
–20.57± 0.06 |
–20.71 ± 0.18 |
|
6 Pb2+ + 8 H2O ⇌ Pb6(OH)84+ + 8 H+ |
–43.61 |
–43.6 |
–42.89± 0.07 |
–43.27 ± 0.47 |
|
PbO(s) + 2 H+ ⇌ Pb2+ + H2O |
|
|
12.62 (red)
12.90 (yellow) |
|
|
PbO(s) +H2O ⇌ Pb2+ + 2 OH– |
–15.28 (red) |
-15.3 |
–15.3 (red)
–15.1 (yellow) |
–15.37 ± 0.04 (red)
–15.1 ± 0.08 (yellow) |
|
Pb2O(OH)2(s) +H2O ⇌ 2 Pb2+ + 4 OH– |
|
|
–14.9 |
|
|
PbO(s) +H2O ⇌ Pb(OH)2 |
|
|
–4.4 (red)
–4.2 (yellow) |
|
|
Pb2O(OH)2(s) +H2O ⇌ 2 Pb(OH)2 |
|
|
–4.0 |
|
|
PbO(s) + 2 H2O ⇌ Pb(OH)3– + H+ |
|
|
–1.4 (red)
–1.2 (yellow) |
|
|
Pb2O(OH)2(s) + 2 H2O ⇌ 2 Pb(OH)3– + 2 H+ |
|
|
–1.0 |
|
|
Close
Lead(IV)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Feitknecht and Schindler, 1963 ...
Reaction |
Feitknecht and Schindler, 1963[68] |
β-PbO2 + 2 H2O ⇌ Pb4+ + 4 OH– |
–64 |
β-PbO2 + 2 H2O + 2 OH– ⇌ Pb(OH)62– |
–4.5 |
Close
Lithium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[69] |
Nordstrom et al., 1990[17] |
Brown and Ekberg, 2016[70] |
Li+ + H2O ⇌ LiOH + H+ |
–13.64 |
–13.64 |
–13.84 ± 0.14 |
Close
Magnesium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[71] |
Nordstrom et al., 1990[17] |
Brown and Ekberg, 2016[72] |
Mg2+ + H2O ⇌ MgOH+ + H+ |
–11.44 |
–11.44 |
–11.70 ± 0.04 |
4 Mg2+ + 4 H2O ⇌ Mg4(OH)44+ + 4 H+ |
–39.71 |
|
|
Mg(OH)2(cr) + 2 H+ ⇌ Mg2+ + 2 H2O |
16.84 |
16.84 |
17.11 ± 0.04 |
Close
Manganese(II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Perrin et al., 1969 ...
Reaction |
Perrin et al., 1969[73] |
Baes and Mesmer, 1976[74] |
Nordstrom et al., 1990[17] |
Hummel et al., 2002[45] |
Brown and Ekberg, 2016[75] |
Mn2+ + H2O ⇌ MnOH+ + H+ |
–10.59 |
–10.59 |
–10.59 |
–10.59 |
−10.58 ± 0.04 |
Mn2+ + 2 H2O ⇌ Mn(OH)2 + 2 H+ |
|
–22.2 |
|
|
−22.18 ± 0.20 |
Mn2+ + 3 H2O ⇌ Mn(OH)3– + 3 H+ |
|
–34.8 |
|
|
−34.34 ± 0.45 |
Mn2+ + 4 H2O ⇌ Mn(OH)42– + 4 H+ |
|
–48.3 |
|
|
−48.28 ± 0.40 |
2 Mn2+ + H2O ⇌ Mn2OH3+ + H+ |
|
–10.56 |
|
|
|
2 Mn2+ + 3 H2O ⇌ Mn2(OH)3+ + 6 H+ |
|
–23.90 |
|
|
|
Mn(OH)2(s) + 2 H+ ⇌ Mn2+ + 2 H2O |
15.2 |
15.2 |
15.2 |
|
15.19 ± 0.10 |
MnO(s) + 2 H+ ⇌ Mn2+ + H2O |
|
|
|
|
17.94 ± 0.12 |
Close
Manganese(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Brown and Ekberg, 2016 ...
Reaction |
Brown and Ekberg, 2016[76] |
Mn3+ + H2O ⇌ MnOH2+ + H+ |
–11.70 ± 0.04 |
Close
Mercury(I)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[77] |
Brown and Ekberg, 2016[78] |
Hg22+ + H2O ⇌ Hg2OH+ + H+ |
−5.0a |
−4.45 ± 0.10 |
Close
(a) 0.5 M HClO4
Mercury(II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[79] |
Powell et all, 2005[80] |
Brown and Ekberg, 2016[76] |
Hg2+ + H2O ⇌ HgOH+ + H+ |
−3.40 |
–3.40 ± 0.08 |
–3.40 ± 0.08 |
Hg2+ + 2 H2O ⇌ Hg(OH)2 + 2 H+ |
-6.17 |
–5.98 ± 0.06 |
−5.96 ± 0.07 |
Hg2+ + 3 H2O ⇌ Hg(OH)3– + 3 H+ |
–21.1 |
–21.1 ± 0.3 |
|
HgO(s) + 2 H+ ⇌ Hg2+ + H2O |
2.56 |
2.37 ± 0.08 |
2.37 ± 0.08 |
Close
Molybdenum(VI)
Hydrolysis constants (log values) in critical compilations at infinite dilution, T = 298.15 K and I = 3 M NaClO4 (a) or 0.1 M Na+ medium, Data at I = 0 are not available (b):
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[81] |
Jolivet, 2000[82] |
NIST46[4] |
Crea et al., 2017[83] |
MoO42– + H+ ⇌ HMoO4– |
3.89a |
|
4.24 |
4.47 ± 0.02 |
MoO42– + 2 H+ ⇌ H2MoO4 |
7.50a |
|
|
8.12 ± 0.03 |
HMoO4– + H+ ⇌ H2MoO4 |
|
|
4.0 |
|
Mo7O246– + H+ ⇌ HMo7O245– |
|
4.4 |
|
|
HMo7O245– + H+ ⇌ H2Mo7O244– |
|
3.5 |
|
|
H2Mo7O244– + H+ ⇌ H3Mo7O243– |
|
2.5 |
|
|
7 MoO42-+ 8 H+ ⇌ Mo7O246– + 4 H2O |
57.74a |
|
52.99b |
51.93 ± 0.04 |
7 MoO42– + 9 H+ ⇌ Mo7O23(OH)5– + 4 H2O |
62.14a |
|
|
58.90 ± 0.02 |
7 MoO42– + 10 H+ ⇌ Mo7O22(OH)24– + 4 H2O |
65.68a |
|
|
64.63 ± 0.05 |
7 MoO42– + 11 H+ ⇌ Mo7O21(OH)33– + 4 H2O |
68.21a |
|
|
68.68 ± 0.06 |
19 MoO42- + 34 H+ ⇌ Mo19O594– + 17 H2O |
196.3a |
|
196a |
|
MoO3(s) + H2O ⇌ MoO42– + 2 H+ |
–12.06a |
|
|
|
Close
Neodymium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[28] |
NIST46[4] |
Neck et al., 2009[84] |
Brown and Ekberg, 2016[29] |
Nd3+ + H2O ⇌ NdOH2+ + H+ |
–8.0 |
–8.0 |
–7.4 ± 0.4 |
–8.13 ± 0.05 |
Nd3+ + 2 H2O ⇌ Nd(OH)2+ + 2 H+ |
(–16.9) |
|
–15.7 ± 0.7 |
|
Nd3+ + 3 H2O ⇌ Nd(OH)3(aq) + 3 H+ |
(–26.5) |
|
–26.2 ± 0.5 |
|
Nd3+ + 4 H2O ⇌ Nd(OH)4− + 4 H+ |
(–37.1) |
–37.4 |
–40.7 ± 0.7 |
|
2 Nd3+ + 2 H2O ⇌ Nd2(OH)24+ + 2 H+ |
–13.86 |
–13.9 |
|
–15.56 ± 0.20 |
3 Nd3+ + 5 H2O ⇌ Nd3(OH)54+ + 5 H+ |
< –28.5 |
|
|
–34.2 ± 0.3 |
Nd(OH)3(s) + 3 H+ ⇌ Nd3+ + 3 H2O |
18.6 |
|
17.2 ± 0.4 |
17.89 ± 0.09 |
Nd(OH)3(s) ⇌ Nd3+ + 3 OH– |
|
–23.2 ± 0.9 |
–21.5 (act)
–23.1(inact) |
|
Close
Neptunium(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Brown and Ekberg, 2016 ...
Reaction |
Brown and Ekberg, 2016[85] |
Grenthe et al, 2020[6] |
Np3+ + H2O ⇌ NpOH2+ + H+ |
-7.3 ± 0.5 |
–6.8 ± 0.3 |
Close
Neptunium(IV)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[86] |
NIST46[4] |
Brown and Ekberg, 2016[87] |
Grenthe et al, 2020[6] |
Np4+ + H2O ⇌ NpOH3+ + H+ |
–1.49 |
–1.5 |
–1.31 ± 0.05 |
0.5 ± 0.2 |
Np4+ + 2 H2O ⇌ Np(OH)22+ + 2 H+ |
|
|
–3.7 ± 0.3 |
0.3 ± 0.3 |
Np4+ + 4 H2O ⇌ Np(OH)4 + 4 H+ |
|
|
–10.0 ± 0.9 |
–8 ± 1 |
Np4+ + 4 OH− ⇌ NpO2(am, hyd) + 2 H2O |
52 |
54.9 ± 0.4 |
57.5 ± 0.3 |
56.7 ± 0.5 |
Close
Neptunium(V)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[86] |
Brown and Ekberg, 2016[88] |
Grenthe et al, 2020[6] |
NpO2+ + + H2O ⇌ NpO2(OH) + H+ |
–8.85 |
–10.7 ± 0.5 |
–11.3 ± 0.7 |
NpO2+ + 2 H2O ⇌ NpO2(OH)2− + 2 H+ |
|
–22.8 ± 0.7 |
–23.6 ± 0.5 |
NpO2+ + H2O ⇌ NpO2(OH)(am, fresh) + H+ |
≤ –4.7 |
–5.21 ± 0.05 |
–5.3 ± 0.2 |
NpO2+ + H2O ⇌ NpO2(OH)(am, aged) + H+ |
|
–4.53 ± 0.06 |
–4.7 ± 0.5 |
Close
Neptunium(VI)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer,
1976[89] |
NIST46[4] |
Brown and Ekberg,
2016[90] |
Grenthe et
al, 2020[6] |
NpO22+ + H2O ⇌ NpO2(OH)+ + H+ |
–5.15 |
–5.12 |
–5.1 ± 0.2 |
–5.1 ± 0.4 |
NpO22+ + 3 H2O ⇌ NpO2(OH)3− + 3 H+ |
|
|
–21 ± 1 |
|
NpO22+ + 4 H2O ⇌ NpO2(OH)42- + 4 H+ |
|
|
–32 ± 1 |
|
2 NpO22+ + 2 H2O ⇌ (NpO2)2(OH)22+ + 2 H+ |
–6.39 |
–6.39 |
–6.2 ± 0.2 |
–6.2 ± 0.2 |
3 NpO22+ + 5 H2O ⇌ (NpO2)3(OH)5+ + 5 H+ |
–17.49 |
–17.49 |
–17.0 ± 0.2 |
–17.1 ± 0.2 |
NpO22+ + 2 H2O ⇌ NpO3.H2O(cr) + 2 H+ |
≥-6.6 |
|
–5.4 ± 0.4 |
–5.4 ± 0.4 |
Close
Nickel(II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Feitknecht and Schindler, 1963 ...
Reaction |
Feitknecht and Schindler, 1963[68] |
Baes and Messmer, 1976[91] |
NIST46[4] |
Gamsjäger et al., 2005[92] |
Thoenen et al., 2014[93] |
Brown and Ekberg, 2016[94] |
Ni2+ + H2O ⇌ NiOH+ + H+ |
|
–9.86 |
–9.9 |
–9.54 ± 0.14 |
–9.54 ± 0.14 |
–9.90 ± 0.03 |
Ni2+ + 2 H2O ⇌ Ni(OH)2 + 2 H+ |
|
–19 |
–19 |
|
< –18 |
–21.15 ± 0.0 |
Ni2+ + 3 H2O ⇌ Ni(OH)3– + 3 H+ |
|
–30 |
–30 |
–29.2 ± 1.7 |
–29.2 ± 1.7 |
|
Ni2+ + 4 H2O ⇌ Ni(OH)42– + 4 H+ |
|
< –44 |
|
|
|
|
2 Ni2+ + H2O ⇌ Ni2(OH)3+ + H+ |
|
–10.7 |
|
–10.6 ± 1.0 |
–10.6 ± 1.0 |
–10.6 ± 1.0 |
4 Ni2+ + 4 H2O ⇌ Ni4(OH)44+ + 4 H+ |
|
–27.74 |
–27.7 |
–27.52 ± 0.15 |
–27.52 ± 0.15 |
–27.9 ± 0.6 |
β-Ni(OH)2(s) + 2 H+ ⇌ Ni2+ + 2 H2O |
|
10.8 |
|
|
11.02 ± 0.20 |
10.96 ± 0.20
11.75 ± 0.13 (microcr) |
Ni(OH)2(s) ⇌ Ni2+ + 2 OH– |
–17.2 (inactive) |
|
–17.2 |
–16.97± 0.20 (β)
–17.2 ± 1.3 (cr) |
|
|
Ni(OH)2(s) + OH– ⇌ Ni(OH)3– |
–4.2 (inactive) |
|
|
|
|
|
NiO(cr) + 2 H+ ⇌ Ni2+ + H2O |
|
|
|
12.38 ± 0.06 |
|
12.48 ± 0.15 |
Close
Niobium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[69] |
Filella and May, 2020[95] |
Nb(OH)5 + H+ ⇌ Nb(OH)4+ + H2O |
~ –0.6 |
1.603 |
Nb(OH)5 + H2O ⇌ Nb(OH)6– + H+ |
~ –4.8 |
–4.951 |
Nb6O198– + H+ ⇌ HNb6O197– |
|
14.95 |
HNb6O197– + H+ ⇌ H2Nb6O196– |
|
13.23 |
H2Nb6O196– + H+ ⇌ H3Nb6O195– |
|
11.73 |
1/2 Nb2O5(act) + 5/2 H2O ⇌ Nb(OH)5 |
~ –7.4 |
|
Nb(OH)5(am,s) ⇌ Nb(OH)5 |
|
–7.510 |
Nb2O5(s) + 5 H2O ⇌ 2 Nb(OH)5 |
|
–18.31 |
Close
Osmium(VI)
Hydrolysis constants (log values) in critical compilations at infinite dilution, I = 0.1 M and T = 298.15 K:
More information Reaction, Galbács et al., 1983 ...
Reaction |
Galbács et al., 1983[96] |
OsO2(OH)42– + H+ ⇌ HOsO2(OH)4– |
10.4 |
HOsO2(OH)4– + H+ ⇌ H2OsO2(OH)4 |
8.5 |
Close
Osmium(VIII)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Galbács et al., 1983 ...
Reaction |
Galbács et al., 1983[96] |
OsO2(OH)3(O−)aq + H+ ⇌ OsO2(OH)4aq |
12.2a |
OsO2(OH)2(O−)2aq + H+ ⇌ OsO2(OH)3(O−)aq |
14.4b |
Close
(a) At I = 0.1 M (b) At I = 2.5 M
Palladium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Perrin et al., 1969 ...
Reaction |
Perrin et al., 1969[97] |
Hummel et al., 2002[45] |
Kitamura and Yul, 2010[98] |
Brown and Ekberg, 2016[99] |
Pd2+ + H2O ⇌ PdOH+ + H+ |
−0.96 |
|
−0.65 ± 0.64 |
−1.16 ± 0.30 |
Pd2+ + 2 H2O ⇌ Pd(OH)2 + 2 H+ |
−2.6 |
−4 ± 1 |
−3.11 ± 0.63 |
−3.07 ± 0.16 |
Pd2+ + 3 H2O ⇌ Pd(OH)3− + 3 H+ |
|
−15.5 ± 1 |
−14.20 ± 0.63 |
|
Pd(OH)2(am) + 2 H+ ⇌ Pd2+ + 2 H2O |
|
−3.3 ± 1 |
|
−3.4 ± 0.2 |
Close
Plutonium(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[100] |
NIST46[4] |
Brown and Ekberg, 2016[101] |
Grenthe et al, 2020[6] |
Pu3+ + H2O ⇌ PuOH2+ + H+ |
|
–7.0 |
–6.9 ± 0.2 |
–6.9 ± 0.3 |
Pu3+ + 3 H2O ⇌ Pu(OH)3(cr) + 3 H+ |
–19.65 |
|
–15.8 ± 0.8 |
–15 ± 1 |
Close
Plutonium(IV)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[102] |
NIST46[4] |
Brown and Ekberg, 2016[103] |
Grenthe et al, 2020[6] |
Pu4+ + H2O ⇌ PuOH 3+ + H+ |
–0.5 |
–0.5 |
–0.7 ± 0.1 |
0.6 ± 0.2 |
Pu4+ + 2 H2O ⇌ Pu(OH)22+ + 2 H+ |
(–2.3) |
|
|
0.6 ± 0.3 |
Pu4+ + 3 H2O ⇌ Pu(OH)3+ + 3 H+ |
(–5.3) |
|
|
–2.3 ± 0.4 |
Pu4+ + 4 H2O ⇌ Pu(OH)4 + 4 H+ |
–9.5 |
|
–12.5 ± 0.7 |
–8.5 ± 0.5 |
Pu4+ + 4 OH− ⇌ PuO2(am, hyd) + 2 H2O |
49.5 |
|
47.9 ± 0.4 (0w)
53.8 ± 0.5 (1w) |
58.3 ± 0.5 |
Close
Plutonium(V)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[104] |
NIST46[4] |
Brown and Ekberg, 2016[105] |
Grenthe et al, 2020[6] |
PuO2+ + H2O ⇌ PuO2(OH) + H+ |
–1.49 |
–1.5 |
–1.31 ± 0.05 |
0.5 ± 0.2 |
PuO2+ + H2O ⇌ PuO2(OH)(am) + H+ |
|
|
–3.7 ± 0.3 |
0.3 ± 0.3 |
Close
Plutonium(VI)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer,
1976[106] |
NIST46[4] |
Brown and Ekberg,
2016[107] |
Grenthe et
al, 2020[6] |
PuO22+ + H2O ⇌ PuO2(OH)+ + H+ |
–5.6 |
–5.6 |
–5.36 ± 0.09 |
–5.5 ± 0.5 |
PuO22+ + 2 H2O ⇌ PuO2(OH)2 + 2 H+ |
|
|
–12.9 ± 0.2 |
–13 ± 1 |
PuO22+ + 3 H2O ⇌ PuO2(OH)3− + 3 H+ |
|
|
|
–24 ± 1 |
2 PuO22+ + 2 H2O ⇌ (PuO2)2(OH)22+ + 2 H+ |
–8.36 |
–8.36 |
–7.8 ± 0.5 |
–7 ± 1 |
3 PuO22+ + 5 H2O ⇌ (PuO2)3(OH)5+ + 5 H+ |
–21.65 |
–21.65 |
|
|
PuO22+ + 2 OH− ⇌ PuO2(OH)2(am, hyd) |
|
|
|
22.8 ± 0.6 |
Close
Potassium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[69] |
Nordstrom et al., 1990[17] |
Brown and Ekberg, 2016[108] |
K+ + H2O ⇌ KOH + H+ |
–14.46 |
–14.46 |
–14.5 ± 0.4 |
Close
Praseodymium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[28] |
NIST46[4] |
Brown and Ekberg, 2016[29] |
Pr3+ + H2O ⇌ PrOH2+ + H+ |
–8.1 |
|
–8.30 ± 0.03 |
2 Pr3+ + 2 H2O ⇌ Pr2(OH)24+ + 2 H+ |
|
|
–16.31 ± 0.20 |
3 Pr3+ + 5 H2O ⇌ Pr3(OH)54+ + 5 H+ |
|
|
–35.0 ± 0.3 |
Pr(OH)3(s) + 3 H+ ⇌ Pr3+ + 3 H2O |
19.5 |
|
18.57 ± 0.20 |
Pr(OH)3(s) ⇌ Pr3+ + 3 OH– |
|
–22.3 ± 1.0 |
|
Close
Radium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Nordstrom et al., 1990 ...
Reaction |
Nordstrom et al., 1990[17] |
Ra2+ + H2O ⇌ RaOH+ + H+ |
–13.49 |
Close
Rhodium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Perrin et al., 1969 ...
Reaction |
Perrin et al., 1969[109] |
Baes and Mesmer, 1976[110] |
Brown and Ekberg[111] |
Rh3+ + H2O ⇌ RhOH2+ + H+ |
‒3.43 |
‒3.4 |
‒3.09 ± 0.1 |
Rh(OH)3(c) + OH‒ ⇌ Rh(OH)4‒ |
|
‒3.9 |
|
Close
Samarium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[28] |
NIST46[4] |
Brown and Ekberg[29] |
Sm3+ + H2O ⇌ SmOH2+ + H+ |
–7.9 |
–7.9 |
–7.84 ± 0.11 |
2 Sm3+ + 2 H2O ⇌ Sm2(OH)24+ + 2 H+ |
|
|
–14.75 ± 0.20 |
3 Sm3+ + 5 H2O ⇌ Sm3(OH)54+ + 5 H+ |
|
|
–33.9 ± 0.3 |
Sm(OH)3(s) + 3H+ ⇌ Sm3+ + 3H2O |
16.5 |
|
17.19 ± 0.30 |
Sm(OH)3(s) ⇌ Sm3+ + 3 OH− |
|
–23.9 ± 0.9 (am)
–25.9 (cr) |
|
Close
Scandium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[112] |
Brown and Ekberg, 2016[113] |
Sc3+ + H2O ⇌ ScOH2+ + H+ |
–4.3 |
–4.16 ± 0.05 |
Sc3+ + 2 H2O ⇌ Sc(OH)2+ + 2 H+ |
–9.7 |
–9.71 ± 0.30 |
Sc3+ + 3 H2O ⇌ Sc(OH)3 + 3 H+ |
–16.1 |
–16.08 ± 0.30 |
Sc3+ + 4 H2O ⇌ Sc(OH)4–+ 4 H+ |
–26 |
–26.7 ± 0.3 |
2 Sc3+ + 2 H2O ⇌ Sc2(OH)24+ + 2 H+ |
–6.0 |
–6.02 ± 0.10 |
3 Sc3+ + 5 H2O ⇌ Sc3(OH)54+ + 5 H+ |
–16.34 |
–16.33 ± 0.10 |
Sc(OH)3(s) + 3 H+ ⇌ Sc3+ + 3 H2O |
|
9.17 ± 0.30 |
ScO1.5(s) + 3 H+ ⇌ Sc3+ + 1.5 H2O |
|
5.53 ± 0.30 |
ScO(OH)(c) + 3 H+ ⇌ Sc3+ + 2 H2O |
9.4 |
|
Sc(OH)3(c) + OH– ⇌ Sc(OH)4 |
|
–3.5 ± 0.2 |
Close
Selenium(–II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Olin et al., 2015 ...
Reaction |
Olin et al., 2015[114] |
Thoenen et al., 2014[93] |
H2Se(g) ⇌ H2Se(aq) |
–1.10 ± 0.01 |
–1.10 ± 0.01 |
H2Se ⇌ HSe– + H+ |
–3.85 ± 0.05 |
–3.85 ± 0.05 |
HSe– ⇌ Se2– + H+ |
–14.91 ± 0.20 |
|
Close
Selenium(IV)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[115] |
Olin et al., 2005[114] |
Thoenen et al., 2014[93] |
SeO32– + H+ ⇌ HSeO3– |
8.50 |
8.36 ± 0.23 |
8.36 ± 0.23 |
HSeO3– + H+ ⇌ H2SeO3 |
2.75 |
2.64 ± 0.14 |
2.64 ± 0.14 |
Close
Selenium(VI)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[116] |
Olin et al., 2005[114] |
Thoenen et al., 2014[93] |
SeO42‒ + H+ ⇌ HSeO4‒ |
1.360 |
1.75 ± 0.10 |
1.75 ± 0.10 |
Close
Silicon
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[117] |
Thoenen et al., 2014[93] |
Si(OH)4 ⇌ SiO(OH)3– + H+ |
–9.86 |
–9.81 ± 0.02 |
Si(OH)4 ⇌ SiO2(OH)22– + 2 H+ |
–22.92 |
–23.14 ± 0.09 |
4 Si(OH)4 ⇌ Si4O6(OH)64– + 2 H+ + 4 H2O |
–13.44 |
|
4 Si(OH)4 ⇌ Si4O8(OH)44– + 4 H+ + 4 H2O |
–35.80 |
–36.3 ± 0.2 |
SiO2(quartz) + 2 H2O ⇌ Si(OH)4 |
–4.0 |
–3.739 ± 0.087 |
SiO2(am) + 2 H2O ⇌ Si(OH)4 |
|
–2.714 |
Close
Silver
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[118] |
Brown and Ekberg, 2016[119] |
Ag+ + H2O ⇌ AgOH + H+ |
−12.0 |
−11.75 ± 0.14 |
Ag+ + 2 H2O ⇌ Ag(OH)2− + 2 H+ |
−24.0 |
−24.34 ± 0.14 |
0.5 Ag2O(am) + H+ ⇌ Ag+ + 0.5 H2O |
6.29 |
6.27 ± 0.05 |
Close
Sodium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[69] |
Nordstrom et al., 1990[17] |
Brown and Ekberg, 2016[120] |
Na+ + H2O ⇌ NaOH + H+ |
–14.18 |
–14.18 |
–14.4 ± 0.2 |
Close
Strontium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[16] |
Nordstrom et al., 1990[17] |
Brown and Ekberg, 2016[121] |
Sr2+ + H2O ⇌ SrOH+ + H+ |
–13.29 |
–13.29 |
–13.15 ± 0.05 |
Close
Tantalum
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[122] |
Filella and May, 2019a[123] |
Ta(OH)5 + H+ ⇌ Ta(OH)4+ + H2O |
~1 |
0.7007 |
Ta(OH)5 + H2O ⇌ Ta(OH)6– + H+ |
~ –9.6 |
|
Ta6O198– + H+ ⇌ HTa6O197– |
|
16.35 |
HTa6O197– + H+ ⇌ H2Ta6O196– |
|
14.00 |
1/2 Ta2O5(act) + 5/2 H2O ⇌ Ta(OH)5 |
~ –5.2 |
|
Ta(OH)5(s) ⇌ Ta(OH)5 |
|
–5.295 |
Ta2O5(s) + 5 H2O ⇌ 2 Ta(OH)5 |
|
–20.00 |
Close
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Tellurium(-II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Filella and May, 2019a ...
Reaction |
Filella and May, 2019a[124] |
Te2‒ + H+ ⇌ HTe‒ |
11.81 |
HTe‒ + H+ ⇌ H2Te |
2.476 |
Close
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Tellurium(IV)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[125] |
Filella and May, 2019a[124] |
TeO32‒ + H+ ⇌ HTeO3‒ |
|
9.928 |
HTeO3‒ + H+ ⇌ H2TeO3 |
|
6.445 |
H2TeO3 ⇌ HTeO3‒ + H+ |
‒2.68 |
|
H2TeO3 ⇌ TeO32‒ + 2 H+ |
‒12.5 |
|
H2TeO3 + H+ ⇌ Te(OH)3+ |
3.13 |
2.415 |
TeO2(s) + H2O ⇌ H2TeO3 |
|
‒4.709 |
Close
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Tellurium(VI)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[125] |
Filella and May, 2019a[124] |
TeO2(OH)42‒ + H+ ⇌ TeO(OH)5‒ |
|
10.83 |
TeO(OH)5‒ + H+ ⇌ Te(OH)6 |
7.68 |
7.696 |
TeO2(OH)42‒ + 2 H+ ⇌ Te(OH)6 |
18.68 |
|
TeO3(OH)33‒ + 3 H+ ⇌ Te(OH)6 |
34.3 |
|
2 Te(OH)6 ⇌ Te2O(OH)11‒ + H+ |
|
‒6.929 |
Close
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Terbium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[28] |
Brown and Ekberg, 2016[126] |
Tb3+ + H2O ⇌ TbOH2+ + H+ |
−7.9 |
−7.60 ± 0.09 |
2 Tb3+ + 2 H2O ⇌ Tb2(OH)24+ + 2 H+ |
|
−13.9 ± 0.2 |
3 Tb3+ + 5 H2O ⇌ Tb3(OH)54+ + 5 H+ |
|
−31.7 ± 0.3 |
Tb(OH)3(s) + 3 H+ ⇌ Tb3+ + 3 H2O |
16.5 |
16.33 ± 0.30 |
Close
Thallium(I)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[127] |
Brown and Ekberg, 2016[128] |
Tl+ + H2O ⇌ TlOH + H+ |
–13.21 |
|
Tl+ + OH– ⇌ TlOH |
|
0.64 ± 0.05 |
Tl+ + 2 OH– ⇌ Tl(OH)2– |
|
–0.7 ± 0.7 |
1/2 Tl2O(s) + H+ ⇌ Tl+ + 1/2 H2O |
|
13.55 ± 0.20 |
Close
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Thallium(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[127] |
Brown and Ekberg, 2016[128] |
Tl3+ + H2O ⇌ TlOH2+ + H+ |
–0.62 |
–0.22 ± 0.19 |
Tl3+ + 2 H2O ⇌ Tl(OH)2+ + 2 H+ |
–1.57 |
|
Tl3+ + 3 H2O ⇌ Tl(OH)3 + 3 H+ |
–3.3 |
|
Tl3+ + 4 H2O ⇌ Tl(OH)4– + 4 H+ |
–15.0 |
|
1/2 Tl2O3(s) + 3 H+ ⇌ Tl3+ + 3/2 H2O |
–3.90 |
–3.90 ± 0.10 |
Close
(a) The number of significant figures are retained to minimise propagation of round-off errors; they should not be taken to indicate the relative uncertainty of the values, which is always at least one order of magnitude less than indicated.
Thorium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer,
1976[129] |
Rand et
al., 2008[130] |
Thoenen et
al, 014[131] |
Brown and Ekberg,
2016[132] |
Th4+ + H2O ⇌ ThOH3+ + H+ |
–3.20 |
–2.5 ± 0.5 |
–2.5 ± 0.5 |
–2.5 ± 0.5 |
Th4+ + 2 H2O ⇌ Th(OH)22+ + 2 H+ |
–6.93 |
–6.2 ± 0.5 |
–6.2 ± 0.5 |
–6.2 ± 0.5 |
Th4+ + 3 H2O ⇌ Th(OH)3+ + 3 H+ |
< –11.7 |
|
|
|
Th4+ + 4 H2O ⇌ Th(OH)4 + 4 H+ |
–15.9 |
–17.4 ± 0.7 |
–17.4 ± 0.7 |
–17.4 ± 0.7 |
2Th4+ + 2 H2O ⇌ Th2(OH)26+ + 2 H+ |
–6.14 |
–5.9 ± 0.5 |
–5.9 ± 0.5 |
–5.9 ± 0.5 |
2Th4+ + 3 H2O ⇌ Th2(OH)35+ + 3 H+ |
|
–6.8 ± 0.2 |
–6.8 ± 0.2 |
–6.8 ± 0.2 |
4Th4+ + 8 H2O ⇌ Th4(OH)88+ + 8 H+ |
–21.1 |
–20.4 ± 0.4 |
–20.4 ± 0.4 |
–20.4 ± 0.4 |
4Th4+ + 12 H2O ⇌ Th4(OH)124+ + 12 H+ |
|
–26.6 ± 0.2 |
–26.6 ± 0.2 |
–26.6 ± 0.2 |
6Th4+ + 15 H2O(l) ⇌ Th6(OH)159+ + 15 H+ |
–36.76 |
–36.8 ± 1.5 |
–36.8 ± 1.5 |
–36.8 ± 1.5 |
6Th4+ + 14 H2O(l) ⇌ Th6(OH)1410+ + 14 H+ |
|
–36.8 ± 1.2 |
–36.8 ± 1.2 |
–36.8 ± 1.2 |
ThO2(c) + 4 H+ ⇌ Th4+ + 2 H2O |
6.3 |
|
|
|
ThO2(am) + 4 H+ ⇌ Th4+ + 2 H2O |
|
|
|
8.8 ± 1.0 |
ThO2(am,hyd,fresh) + 4 H+ ⇌ Th4+ + 2 H2O |
|
|
9.3 ± 0.9 |
|
ThO2(am,hyd,aged) + 4 H+ ⇌ Th4+ + 2 H2O |
|
|
8.5 ± 0.9 |
|
Th4+ + 4 OH− ⇌ ThO2(am,hyd,fresh) + 2 H2O |
|
46.7 ± 0.9 |
|
|
Th4+ + 4 OH− ⇌ ThO2(am,hyd,aged) + 2 H2O |
|
47.5 ± 0.9 |
|
|
Close
Thulium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[28] |
Brown and Ekberg, 2016[133] |
Tm3+ + H2O ⇌ TmOH2+ + H+ |
−7.7 |
−7.34 ± 0.09 |
2 Tm3+ + 2 H2O ⇌ Tm2(OH)24+ + 2 H+ |
|
−13.2 ± 0.2 |
3 Tm3+ + 5 H2O ⇌ Tm3(OH)54+ + 5 H+ |
|
−30.5 ± 0.3 |
Tm(OH)3(s) + 3 H+ ⇌ Tm3+ + 3 H2O |
15.0 |
15.56 ± 0.40 |
Close
Tin(II)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Feitknecht, 1963 ...
Reaction |
Feitknecht, 1963[68] |
Baes and Mesmer, 1976[134] |
Hummel et al., 2002[45] |
NIST46[4] |
Cigala et al, 2012[135] |
Gamsjäger et al, 2012[136] |
Brown and Ekberg, 2016[137] |
Sn2+ + H2O ⇌ SnOH+ + H+ |
|
–3.40 |
–3.8 ± 0.2 |
–3.4 |
–3.52 ± 0.05 |
–3.53 ± 0.40 |
–3.53 ± 0.40 |
Sn2+ + 2 H2O ⇌ Sn(OH)2 + 2 H+ |
|
–7.06 |
–7.7 ± 0.2 |
–7.1 |
–6.26 ± 0.06 |
–7.68 ± 0.40 |
–7.68 ± 0.40 |
Sn2+ + 3 H2O ⇌ Sn(OH)3– + 3 H+ |
|
–16.61 |
–17.5 ± 0.2 |
–16.6 |
–16.97 ± 0.17 |
–17.00 ± 0.60 |
–17.56 ± 0.40 |
2 Sn2+ + 2 H2O ⇌ Sn2(OH)22+ + 2 H+ |
|
–4.77 |
|
–4.8 |
–4.79 ± 0.05 |
|
|
3 Sn2+ + 4 H2O ⇌ Sn3(OH)42+ + 4 H+ |
|
–6.88 |
–5.6 ± 1.6 |
–6.88 |
–5.88 ± 0.05 |
–5.60 ± 0.47 |
−5.60 ± 0.47 |
Sn(OH)2(s) ⇌ Sn2+ + 2 OH– |
|
|
|
–25.8 |
–26.28 ± 0.08 |
|
|
SnO(s) + 2 H+ ⇌ Sn2+ + H2O |
|
1.76 |
2.5± 0.5 |
|
|
|
1.60 ± 0.15 |
SnO(s) + H2O ⇌ Sn2+ + 2 OH– |
–26.2 |
|
|
|
|
|
|
SnO(s) + H2O ⇌ Sn(OH)2 |
–5.3 |
|
|
|
|
|
|
SnO(s) + 2 H2O ⇌ Sn(OH)3– + H+ |
–0.9 |
|
|
|
|
|
|
Close
Tin(IV)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Hummel et al., 2002 ...
Reaction |
Hummel et al., 2002[45] |
Gamsjäger et al, 2012[136] |
Brown and Ekberg, 2016[137] |
Sn4+ + 4 H2O ⇌ Sn(OH)4 + 4 H+ |
|
|
7.53 ± 0.12 |
Sn4+ + 5 H2O ⇌ Sn(OH)5– + 5 H+ |
|
|
–1.07 ± 0.42 |
Sn4+ + 6 H2O ⇌ Sn(OH)62– + 6 H+ |
|
|
–1.07 ± 0.42 |
Sn(OH)4 + H2O ⇌ Sn(OH)5– + H+ |
–8.0 ± 0.3 |
–8.60 ± 0.40 |
|
Sn(OH)4 + 2 H2O ⇌ Sn(OH)62– + 2 H+ |
–18.4 ± 0.3 |
–18.67 ± 0.30 |
|
SnO2(cr) + 2 H2O ⇌ Sn(OH)4 |
–8.0 ± 0.2 |
–8.06 ± 0.11 |
|
SnO2(am) + 2 H2O ⇌ Sn(OH)4 |
–7.3 ± 0.3 |
–7.22 ± 0.08 |
|
SnO2(s) + 4 H+ ⇌ Sn4+ + 2 H2O |
|
|
–15.59 ± 0.04 |
Close
Tungsten
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, NIST46 ...
Reaction |
NIST46[4] |
WO42– + H+ ⇌ HWO4– |
3.6 |
WO42– + 2 H+ ⇌ H2WO4 |
5.8 |
6 WO42– + 7 H+ ⇌ HW6O215– + 3 H2O |
63.83 |
Close
Titanium(III)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Perrin et al., 1969 ...
Reaction |
Perrin et al., 1969[138] |
Baes and Mesmer, 1976[139] |
Brown and Ekberg, 2016[140] |
Ti3+ + H2O ⇌ TiOH2+ + H+ |
–1.29 |
–2.2 |
–1.65 ± 0.11 |
2 Ti3+ + 2 H2O ⇌ Ti2(OH)24+ + 2 H+ |
|
–3.6 |
–2.64 ± 0.10 |
Close
Titanium(IV)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[139] |
Brown and Ekberg, 2016[140] |
Ti(OH)22+ + H2O ⇌ Ti(OH)3+ + H+ |
⩽–2.3 |
|
Ti(OH)22+ + 2 H2O ⇌ Ti(OH)4 + 2 H+ |
–4.8 |
|
TiO2+ + H2O ⇌ TiOOH+ + H+ |
|
–2.48 ± 0.10 |
TiO2+ + 2 H2O ⇌ TiO(OH)2 + 2 H+ |
|
–5.49 ± 0.14 |
TiO2+ + 3 H2O ⇌ TiO(OH)3– + 3 H+ |
|
–17.4 ± 0.5 |
TiO(OH)2 + H2O ⇌ TiO(OH)3– + H+ |
|
–11.9 ±0.5 |
TiO2(c) +2 H2O ⇌ Ti(OH)4 |
~ –4.8 |
|
TiO2(s) + H+ ⇌ TiOOH+ |
|
–6.06 ± 0.30 |
TiO2(s) + H2O ⇌ TiO(OH)2 |
|
–9.02 ± 0.02 |
TiO2 x H2O ⇌ Ti(OH)22+[OH–] |
|
|
TiO2(s) + 4 H+ ⇌ Ti4+ + 2 H2O |
|
–3.56 ± 0.10 |
Close
Uranium(IV)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer,
1976[141] |
Thoenen et
al., 2014[142] |
Brown and Ekberg,
2016[143] |
Grenthe et al.,
2020[6] |
U4+ + H2O ⇌ UOH3+ + H+ |
–0.65 |
– 0.54 ± 0.06 |
–0.58 ± 0.08 |
– 0.54 ± 0.06 |
U4+ + 2 H2O ⇌ U(OH)22+ + 2 H+ |
(–2.6) |
–1.1 ± 1.0 |
–1.4 ± 0.2 |
–1.9 ± 0.2 |
U4+ + 3 H2O ⇌ U(OH)3+ + 3 H+ |
(–5.8) |
–4.7 ± 1.0 |
–5.1 ± 0.3 |
–5.2 ± 0.4 |
U4+ + 4 H2O ⇌ U(OH)4 + 4 H+ |
(–10.3) |
–10.0 ± 1.4 |
–10.4 ± 0.5 |
–10.0 ± 1.4 |
U4+ + 5 H2O ⇌ U(OH)5− + 5 H+ |
–16.0 |
|
|
|
UO2(am, hyd) + 4 H+ ⇌ U4+ + 2 H2O |
|
1.5 ± 1.0 |
|
|
UO2(am,hyd) + 2 H2O ⇌ U4+ + 4 OH– |
|
|
–54.500 ± 1.000 |
–54.500 ± 1.000 |
UO2(c) + 4 H+ ⇌ U4+ + 2 H2O |
–1.8 |
|
|
|
UO2(c) + 2 H2O ⇌ U4+ + 4 OH– |
|
|
|
–60.860 ± 1.000 |
Close
Uranium(VI)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer,
1976[144] |
Grenthe et
al., 1992[145] |
NIST46[4] |
Brown and Ekberg,
2016[146] |
Grenthe et al.,
2020[6] |
UO22+ + H2O ⇌ UO2(OH)+ + H+ |
–5.8 |
–5.2 ± 0.3 |
–5.9 ± 0.1 |
–5.13 ± 0.04 |
–5.25 ± 0.24 |
UO22+ + 2 H2O ⇌ UO2(OH)2 + 2 H+ |
|
≤-10.3 |
|
–12.15 ± 0.20 |
–12.15 ± 0.07 |
UO22+ + 3 H2O ⇌ UO2(OH)3– + 3 H+ |
|
–19.2 ± 0.4 |
|
–20.25 ± 0.42 |
–20.25 ± 0.42 |
UO22+ + 4 H2O ⇌ UO2(OH)42– + 4 H+ |
|
–33 ± 2 |
|
–32.40 ± 0.68 |
–32.40 ± 0.68 |
2 UO22+ + 2 H2O ⇌ (UO2)2(OH)22+ + 2 H+ |
–5.62 |
–5.62 ± 0.04 |
–5.58 ± 0.04 |
–5.68 ± 0.05 |
–5.62 ± 0.08 |
3 UO22+ + 5 H2O ⇌ (UO2)3(OH)5+ + 5 H+ |
–15.63 |
–15.55 ± 0.12 |
–15.6 |
–15.75 ± 0.12 |
–15.55 ± 0.12 |
3 UO22+ + 4 H2O ⇌ (UO2)3(OH)42+ + 4 H+ |
(–11.75) |
–11.9 ± 0.3 |
|
–11.78 ± 0.05 |
–11.9 ± 0.3 |
3 UO22+ + 7 H2O ⇌ (UO2)3(OH)7– + 7 H+ |
|
–31 ± 2.0 |
|
–32.2 ± 0.8 |
–32.2 ± 0.8 |
4 UO22+ + 7 H2O ⇌ (UO2)4(OH)7+ + 7 H+ |
|
–21.9 ± 1.0 |
|
–22.1 ± 0.2 |
–21.9 ± 1.0 |
2 UO22+ + H2O ⇌ (UO2)2(OH)3+ + H+ |
|
–2.7 ± 1.0 |
|
|
–2.7 ± 1.0 |
UO2(OH)2(s) + 2H+ ⇌ UO22+ + 2 H2O |
5.6 |
|
6.0 |
4.81 ± 0.20 |
|
UO3·2H2O(cr) + 2H+ ⇌ UO22+ + 3 H2O |
|
|
|
|
5.350 ± 0.130 |
Close
Vanadium(IV)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Brown and Ekberg, 2016 ...
Reaction |
Brown and Ekberg, 2016[76] |
VO2+ + H2O ⇌ VO(OH)+ + H+ |
–5.30 ± 0.13 |
2 VO2+ + 2 H2O ⇌ (VO)2(OH)22+ + 2 H+ |
–6.71 ± 0.10 |
Close
Vanadium(V)
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[147] |
Brown and Ekberg, 2016[148] |
VO2+ + 2 H2O ⇌ VO(OH)3 + H+ |
–3.3 |
|
VO2+ + 2 H2O ⇌ VO2(OH)2– + 2 H+ |
–7.3 |
–7.18 ± 0.12 |
10 VO2+ + 8 H2O ⇌ V10O26(OH)24– + 14 H+ |
–10.7 |
|
VO2(OH)2– ⇌ VO3(OH)2– + H+ |
–8.55 |
|
2 VO2(OH)2– ⇌ V2O6(OH)23– + H+ + H2O |
–6.53 |
|
VO3(OH)2– ⇌ VO43– + H+ |
–14.26 |
|
2 VO3(OH)2– ⇌ V2O74– + H2O |
0.56 |
|
3 VO3(OH)2– + 3 H+⇌ V3O93– + 3 H2O |
31.81 |
|
V10O26(OH)24– ⇌ V10O27(OH)5– + 3 H+ |
–3.6 |
|
V10O27(OH)5– ⇌ V10O286– + H+ |
–6.15 |
|
VO2+ + H2O ⇌ VO2OH + H+ |
|
–3.25 ± 0.1 |
VO2+ + 3 H2O ⇌ VO2(OH)32- + 3 H+ |
|
–15.74 ± 0.19 |
VO2+ + 4 H2O ⇌ VO2(OH)43- + 4 H+ |
|
–30.03 ± 0.24 |
2 VO2+ + 4 H2O ⇌ (VO2)2(OH)42- + 4 H+ |
|
–11.66 ± 0.53 |
2 VO2+ + 5 H2O ⇌ (VO2)2(OH)53- + 5 H+ |
|
–20.91 ± 0.22 |
2 VO2+ + 6 H2O ⇌ (VO2)2(OH)64- + 6 H+ |
|
–32.43 ± 0.30 |
4 VO2+ + 8 H2O ⇌ (VO2)4(OH)84- + 8 H+ |
|
–20.78 ± 0.33 |
4 VO2+ + 9 H2O ⇌ (VO2)4(OH)95- + 9 H+ |
|
–31.85 ± 0.26 |
4 VO2+ + 10 H2O ⇌ (VO2)4(OH)106- + 10 H+ |
|
–45.85 ± 0.26 |
5 VO2+ + 10 H2O ⇌ (VO2)5(OH)105- + 10 H+ |
|
–27.02 ± 0.34 |
10 VO2+ + 14 H2O ⇌ (VO2)10(OH)144- + 14 H+ |
|
–10.5 ± 0.3 |
10 VO2+ + 15 H2O ⇌ (VO2)10(OH)155- + 15 H+ |
|
–15.73 ± 0.33 |
10 VO2+ + 16 H2O ⇌ (VO2)10(OH)166- + 16 H+ |
|
–23.90 ± 0.35 |
1/2 V2O5(c) + H+ ⇌ VO2+ + 1/2 H2O |
–0.66 |
|
V2O5(s) + 2 H+ ⇌ 2 VO2+ + H2O |
|
–0.64 ± 0.09 |
Close
Ytterbium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[28] |
Brown and Ekberg, 2016[149] |
Yb3+ + H2O ⇌ YbOH2+ + H+ |
−7.7 |
−7.31 ± 0.18 |
Yb3+ + 2 H2O ⇌ Yb(OH)2+ + 2 H+ |
(−15.8) |
|
Yb3+ + 3 H2O ⇌ Yb(OH)3 + 3 H+ |
(−24.1) |
|
Yb3+ + 4 H2O ⇌ Yb(OH)4− + 4 H+ |
−32.7 |
|
2 Yb3+ + 2 H2O ⇌ Yb2(OH)24+ + 2 H+ |
|
−13.76 ± 0.20 |
3 Yb3+ + 5 H2O ⇌ Yb3(OH)54+ + 5 H+ |
|
−30.6 ± 0.3 |
Yb(OH)3(s) + 3 H+ ⇌ Yb3+ + 3 H2O |
14.7 |
15.35 ± 0.20 |
Close
Yttrium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[28] |
Brown and Ekberg, 2016[29] |
Y3+ + H2O ⇌ YOH2+ + H+ |
–7.7 |
–7.77 ± 0.06 |
Y3+ + 2 H2O ⇌ Y(OH)2+ + 2 H+ |
(–16.4) [Estimation] |
|
Y3+ + 3 H2O ⇌ Y(OH)3 + 3 H+ |
(–26.0) [Estimation] |
|
Y3+ + 4 H2O ⇌ Y(OH)4−+ 4 H+ |
–36.5 |
|
2 Y3+ + 2 H2O ⇌ Y2(OH)24+ + 2 H+ |
–14.23 |
–14.1 ± 0.2 |
3 Y3+ + 5 H2O ⇌ Y3(OH)54+ + 5 H+ |
–31.6 |
–32.7 ± 0.3 |
Y(OH)3(s) + 3 H+ ⇌ Y3+ + 3 H2O |
17.5 |
17.32 ± 0.30 |
Close
Zinc
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[150] |
Powell and Brown, 2013[151] |
Brown and Ekberg, 2016[152] |
Zn2+ + H2O ⇌ ZnOH+ + H+ |
−8.96 |
−8.96 ± 0.05 |
−8.94 ± 0.06 |
Zn2+ + 2 H2O ⇌ Zn(OH)2 + 2 H+ |
−16.9 |
–17.82 ± 0.08 |
−17.89 ± 0.15 |
Zn2+ + 3 H2O ⇌ Zn(OH)3− + 3 H+ |
−28.4 |
–28.05 ± 0.05 |
−27.98 ± 0.10 |
Zn2+ + 4 H2O ⇌ Zn(OH)42- + 4 H+ |
−41.2 |
–40.41 ± 0.12 |
−40.35 ± 0.22 |
2 Zn2+ + H2O ⇌ Zn2OH3+ + H+ |
−9.0 |
–7.9 ± 0.2 |
−7.89 ± 0.31 |
2 Zn2+ + 6 H2O ⇌ Zn2(OH)62- + 6 H+ |
−57.8 |
|
|
ZnO(s) + 2 H+ ⇌ Zn2+ + H2O |
11.14 |
11.12 ± 0.05 |
11.11 ± 0.10 |
ε-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O |
|
11.38 ± 0.20 |
11.38± 0.20 |
β1-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O |
|
11.72 ± 0.04 |
|
β2-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O |
|
11.76 ± 0.04 |
|
γ-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O |
|
11.70 ± 0.04 |
|
δ-Zn(OH)2(s) + 2 H+ ⇌ Zn2+ + 2 H2O |
|
11.81 ± 0.04 |
|
Close
Zirconium
Hydrolysis constants (log values) in critical compilations at infinite dilution and T = 298.15 K:
More information Reaction, Baes and Mesmer, 1976 ...
Reaction |
Baes and Mesmer, 1976[54] |
Thoenen et al., 2014[93] |
Brown and Ekberg, 2016[153] |
Zr4+ + H2O ⇌ ZrOH3+ + H+ |
0.32 |
0.32 ± 0.22 |
0.12 ± 0.12 |
Zr4+ + 2 H2O ⇌ Zr(OH)22+ + 2 H+ |
(−1.7)* |
0.98 ± 1.06* |
−0.18 ± 0.17* |
Zr4+ + 3 H2O ⇌ Zr(OH)3+ + 3 H+ |
(−5.1) |
|
|
Zr4+ + 4 H2O ⇌ Zr(OH)4 + 4 H+ |
–9.7* |
–2.19 ± 0.70* |
−4.53 ± 0.37* |
Zr4+ + 5 H2O ⇌ Zr(OH)5– + 5 H+ |
–16.0 |
|
|
Zr4+ + 6 H2O ⇌ Zr(OH)62– + 6 H+ |
|
–29± 0.70 |
–30.5 ± 0.3 |
3 Zr4+ + 4 H2O ⇌ Zr3(OH)48+ + 4 H+ |
–0.6 |
0.4 ± 0.3 |
0.90 ± 0.18 |
3 Zr4+ + 5 H2O ⇌ Zr3(OH)57+ + 5 H+ |
3.70 |
|
|
3 Zr4+ + 9 H2O ⇌ Zr3(OH)93+ + 9 H+ |
|
12.19 ± 0.20 |
12.19 ± 0.20 |
4 Zr4+ + 8 H2O ⇌ Zr4(OH)88+ + 8 H+ |
6.0 |
6.52 ± 0.05 |
6.52 ± 0.05 |
4 Zr4+ + 15 H2O ⇌ Zr4(OH)15+ + 15 H+ |
|
12.58± 0.24 |
|
4 Zr4+ + 16 H2O ⇌ Zr4(OH)16 + 16 H+ |
|
8.39± 0.80 |
|
ZrO2(s) + 4 H+ ⇌ Zr4+ + 2 H2O |
–1.9* |
|
–5.37 ± 0.42* |
ZrO2(s, baddeleyite) + 4 H+ ⇌ Zr4+ + 2 H2O |
|
–7 ± 1.6 |
|
ZrO2(am) + 4 H+ ⇌ Zr4+ + 2 H2O |
|
–3.24± 0.10 |
–2.97 ± 0.18 |
Close
*Errors in compilations concerning equilibrium and/or data elaboration. Data not recommended. It is strongly suggested to refer to the original papers.