Hyperperfect number
Type of natural number From Wikipedia, the free encyclopedia
In number theory, a k-hyperperfect number is a natural number n for which the equality holds, where σ(n) is the divisor function (i.e., the sum of all positive divisors of n). A hyperperfect number is a k-hyperperfect number for some integer k. Hyperperfect numbers generalize perfect numbers, which are 1-hyperperfect.[1]
The first few numbers in the sequence of k-hyperperfect numbers are 6, 21, 28, 301, 325, 496, 697, ... (sequence A034897 in the OEIS), with the corresponding values of k being 1, 2, 1, 6, 3, 1, 12, ... (sequence A034898 in the OEIS). The first few k-hyperperfect numbers that are not perfect are 21, 301, 325, 697, 1333, ... (sequence A007592 in the OEIS).
List of hyperperfect numbers
Summarize
Perspective
The following table lists the first few k-hyperperfect numbers for some values of k, together with the sequence number in the On-Line Encyclopedia of Integer Sequences (OEIS) of the sequence of k-hyperperfect numbers:
k | k-hyperperfect numbers | OEIS |
---|---|---|
1 | 6, 28, 496, 8128, 33550336, ... | OEIS: A000396 |
2 | 21, 2133, 19521, 176661, 129127041, ... | OEIS: A007593 |
3 | 325, ... | |
4 | 1950625, 1220640625, ... | |
6 | 301, 16513, 60110701, 1977225901, ... | OEIS: A028499 |
10 | 159841, ... | |
11 | 10693, ... | |
12 | 697, 2041, 1570153, 62722153, 10604156641, 13544168521, ... | OEIS: A028500 |
18 | 1333, 1909, 2469601, 893748277, ... | OEIS: A028501 |
19 | 51301, ... | |
30 | 3901, 28600321, ... | |
31 | 214273, ... | |
35 | 306181, ... | |
40 | 115788961, ... | |
48 | 26977, 9560844577, ... | |
59 | 1433701, ... | |
60 | 24601, ... | |
66 | 296341, ... | |
75 | 2924101, ... | |
78 | 486877, ... | |
91 | 5199013, ... | |
100 | 10509080401, ... | |
108 | 275833, ... | |
126 | 12161963773, ... | |
132 | 96361, 130153, 495529, ... | |
136 | 156276648817, ... | |
138 | 46727970517, 51886178401, ... | |
140 | 1118457481, ... | |
168 | 250321, ... | |
174 | 7744461466717, ... | |
180 | 12211188308281, ... | |
190 | 1167773821, ... | |
192 | 163201, 137008036993, ... | |
198 | 1564317613, ... | |
206 | 626946794653, 54114833564509, ... | |
222 | 348231627849277, ... | |
228 | 391854937, 102744892633, 3710434289467, ... | |
252 | 389593, 1218260233, ... | |
276 | 72315968283289, ... | |
282 | 8898807853477, ... | |
296 | 444574821937, ... | |
342 | 542413, 26199602893, ... | |
348 | 66239465233897, ... | |
350 | 140460782701, ... | |
360 | 23911458481, ... | |
366 | 808861, ... | |
372 | 2469439417, ... | |
396 | 8432772615433, ... | |
402 | 8942902453, 813535908179653, ... | |
408 | 1238906223697, ... | |
414 | 8062678298557, ... | |
430 | 124528653669661, ... | |
438 | 6287557453, ... | |
480 | 1324790832961, ... | |
522 | 723378252872773, 106049331638192773, ... | |
546 | 211125067071829, ... | |
570 | 1345711391461, 5810517340434661, ... | |
660 | 13786783637881, ... | |
672 | 142718568339485377, ... | |
684 | 154643791177, ... | |
774 | 8695993590900027, ... | |
810 | 5646270598021, ... | |
814 | 31571188513, ... | |
816 | 31571188513, ... | |
820 | 1119337766869561, ... | |
968 | 52335185632753, ... | |
972 | 289085338292617, ... | |
978 | 60246544949557, ... | |
1050 | 64169172901, ... | |
1410 | 80293806421, ... | |
2772 | 95295817, 124035913, ... | OEIS: A028502 |
3918 | 61442077, 217033693, 12059549149, 60174845917, ... | |
9222 | 404458477, 3426618541, 8983131757, 13027827181, ... | |
9828 | 432373033, 2797540201, 3777981481, 13197765673, ... | |
14280 | 848374801, 2324355601, 4390957201, 16498569361, ... | |
23730 | 2288948341, 3102982261, 6861054901, 30897836341, ... | |
31752 | 4660241041, 7220722321, 12994506001, 52929885457, 60771359377, ... | OEIS: A034916 |
55848 | 15166641361, 44783952721, 67623550801, ... | |
67782 | 18407557741, 18444431149, 34939858669, ... | |
92568 | 50611924273, 64781493169, 84213367729, ... | |
100932 | 50969246953, 53192980777, 82145123113, ... |
It can be shown that if k > 1 is an odd integer and and are prime numbers, then is k-hyperperfect; Judson S. McCranie has conjectured in 2000 that all k-hyperperfect numbers for odd k > 1 are of this form, but the hypothesis has not been proven so far. Furthermore, it can be proven that if p ≠ q are odd primes and k is an integer such that then pq is k-hyperperfect.
It is also possible to show that if k > 0 and is prime, then for all i > 1 such that is prime, is k-hyperperfect. The following table lists known values of k and corresponding values of i for which n is k-hyperperfect:
k | Values of i | OEIS |
---|---|---|
16 | 11, 21, 127, 149, 469, ... | OEIS: A034922 |
22 | 17, 61, 445, ... | |
28 | 33, 89, 101, ... | |
36 | 67, 95, 341, ... | |
42 | 4, 6, 42, 64, 65, ... | OEIS: A034923 |
46 | 5, 11, 13, 53, 115, ... | OEIS: A034924 |
52 | 21, 173, ... | |
58 | 11, 117, ... | |
72 | 21, 49, ... | |
88 | 9, 41, 51, 109, 483, ... | OEIS: A034925 |
96 | 6, 11, 34, ... | |
100 | 3, 7, 9, 19, 29, 99, 145, ... | OEIS: A034926 |
References
Further reading
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.