Top Qs
Timeline
Chat
Perspective

Hypocontinuous bilinear map

From Wikipedia, the free encyclopedia

Remove ads

In mathematics, a hypocontinuous is a condition on bilinear maps of topological vector spaces that is weaker than continuity but stronger than separate continuity. Many important bilinear maps that are not continuous are, in fact, hypocontinuous.

Definition

If , and are topological vector spaces then a bilinear map is called hypocontinuous if the following two conditions hold:

  • for every bounded set the set of linear maps is an equicontinuous subset of , and
  • for every bounded set the set of linear maps is an equicontinuous subset of .
Remove ads

Sufficient conditions

Theorem:[1] Let X and Y be barreled spaces and let Z be a locally convex space. Then every separately continuous bilinear map of into Z is hypocontinuous.

Examples

  • If X is a Hausdorff locally convex barreled space over the field , then the bilinear map defined by is hypocontinuous.[1]

See also

References

Loading content...

Bibliography

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads