Top Qs
Timeline
Chat
Perspective
Lambert quadrilateral
From Wikipedia, the free encyclopedia
Remove ads
Remove ads
In geometry, a Lambert quadrilateral (also known as Ibn al-Haytham–Lambert quadrilateral),[1][2] is a quadrilateral in which three of its angles are right angles. Historically, the fourth angle of a Lambert quadrilateral was of considerable interest since if it could be shown to be a right angle, then the Euclidean parallel postulate could be proved as a theorem. It is now known that the type of the fourth angle depends upon the geometry in which the quadrilateral exists. In hyperbolic geometry the fourth angle is acute, in Euclidean geometry it is a right angle and in elliptic geometry it is an obtuse angle.

A Lambert quadrilateral can be constructed from a Saccheri quadrilateral by joining the midpoints of the base and summit of the Saccheri quadrilateral. This line segment is perpendicular to both the base and summit and so either half of the Saccheri quadrilateral is a Lambert quadrilateral.
Remove ads
Lambert quadrilateral in hyperbolic geometry
In hyperbolic geometry a Lambert quadrilateral AOBF where the angles are right, and F is opposite O , is an acute angle, and the curvature = -1 the following relations hold:[3]
Where are hyperbolic functions
Remove ads
Examples
![]() *3222 symmetry with 60-degree angle on one of its corners. |
![]() *4222 symmetry with 45-degree angle on one of its corners. |
![]() The limiting Lambert quadrilateral has three right angles, and one 0-degree angle with an ideal vertex at infinity, defining orbifold *∞222 symmetry. |
See also
Notes
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads