Top Qs
Timeline
Chat
Perspective

Igusa quartic

From Wikipedia, the free encyclopedia

Remove ads

In algebraic geometry, the Igusa quartic (also called the Castelnuovo–Richmond quartic CR4 or the Castelnuovo–Richmond–Igusa quartic) is a quartic hypersurface in 4-dimensional projective space, studied by Igusa (1962). It is closely related to the moduli space of genus 2 curves with level 2 structure. It is the dual of the Segre cubic.

It can be given as a codimension 2 variety in P5 by the equations

Remove ads

References

  • Dolgachev, Igor V. (2012), Classical Algebraic Geometry: a modern view (PDF), Cambridge University Press, ISBN 978-1-107-01765-8, archived from the original (PDF) on 2014-05-31, retrieved 2016-08-17
  • Hunt, Bruce (1996), The Geometry of some special Arithmetic Quotients, Lecture Notes in Mathematics, vol. 1637, Berlin, New York: Springer-Verlag, doi:10.1007/BFb0094399, ISBN 978-3-540-61795-2, MR 1438547
  • Igusa, Jun-ichi (1962), "On Siegel Modular Forms of Genus Two", American Journal of Mathematics, 84 (1), The Johns Hopkins University Press: 175–200, doi:10.2307/2372812, ISSN 0002-9327, JSTOR 2372812


Remove ads
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads