Index set (computability)

Classes of partial recursive functions From Wikipedia, the free encyclopedia

In computability theory, index sets describe classes of computable functions; specifically, they give all indices of functions in a certain class, according to a fixed Gödel numbering of partial computable functions.

Definition

Let be a computable enumeration of all partial computable functions, and be a computable enumeration of all c.e. sets.

Let be a class of partial computable functions. If then is the index set of . In general is an index set if for every with (i.e. they index the same function), we have . Intuitively, these are the sets of natural numbers that we describe only with reference to the functions they index.

Index sets and Rice's theorem

Most index sets are non-computable, aside from two trivial exceptions. This is stated in Rice's theorem:

Let be a class of partial computable functions with its index set . Then is computable if and only if is empty, or is all of .

Rice's theorem says "any nontrivial property of partial computable functions is undecidable".[1]

Completeness in the arithmetical hierarchy

Index sets provide many examples of sets which are complete at some level of the arithmetical hierarchy. Here, we say a set is -complete if, for every set , there is an m-reduction from to . -completeness is defined similarly. Here are some examples:[2]

  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete, where is the halting problem.

Empirically, if the "most obvious" definition of a set is [resp. ], we can usually show that is -complete [resp. -complete].

Notes

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.