Integrable module

From Wikipedia, the free encyclopedia

In algebra, an integrable module (or integrable representation) of a Kac–Moody algebra (a certain infinite-dimensional Lie algebra) is a representation of such that (1) it is a sum of weight spaces and (2) the Chevalley generators of are locally nilpotent.[1] For example, the adjoint representation of a Kac–Moody algebra is integrable.[2]

Notes

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.