Top Qs
Timeline
Chat
Perspective
Kaluza–Klein–Riemann curvature tensor
Five-dimensional Riemann curvature tensor From Wikipedia, the free encyclopedia
Remove ads
In Kaluza–Klein theory, a unification of general relativity and electromagnetism, the five-fimensional Kaluza–Klein–Riemann curvature tensor (or Kaluza–Klein–Riemann–Christoffel curvature tensor) is the generalization of the four-dimensional Riemann curvature tensor (or Riemann–Christoffel curvature tensor). Its contraction with itself is the Kaluza–Klein–Ricci tensor, a generalization of the Ricci tensor. Its contraction with the Kaluza–Klein metric is the Kaluza–Klein–Ricci scalar, a generalization of the Ricci scalar.
![]() | The topic of this article may not meet Wikipedia's general notability guideline. (June 2025) |
The Kaluza–Klein–Riemann curvature tensor, Kaluza–Klein–Ricci tensor and scalar are namend after Theodor Kaluza, Oskar Klein, Bernhard Riemann and Gregorio Ricci-Curbastro.
Remove ads
Definition
Summarize
Perspective
Let be the Kaluza–Klein metric and be the Kaluza–Klein–Christoffel symbols. The Kaluza–Klein–Riemann curvature tensor is given by:
The Kaluza–Klein–Ricci tensor and scalar are given by:[1]
Remove ads
Literature
- Overduin, J. M.; Wesson, P. S. (1997). "Kaluza–Klein Gravity". Physics Reports. 283 (5): 303–378. arXiv:gr-qc/9805018. Bibcode:1997PhR...283..303O. doi:10.1016/S0370-1573(96)00046-4. S2CID 119087814.
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads