Top Qs
Timeline
Chat
Perspective

Karlsruhe metric

From Wikipedia, the free encyclopedia

Karlsruhe metric
Remove ads

In metric geometry, the Karlsruhe metric is a measure of distance that assumes travel is only possible along rays through the origin and circular arcs centered at the origin. The name alludes to the layout of the city of Karlsruhe, which has radial streets and circular avenues around a central point. This metric is also called Moscow metric.[1][2]

Thumb
View of Karlsruhe in 1721

In this metric, there are two types of shortest paths. One possibility, when the two points are on nearby rays, combines a circular arc through the nearer to the origin of the two points and a segment of a ray through the farther of the two points. Alternatively, for points on rays that are nearly opposite, it is shorter to follow one ray all the way to the origin and then follow the other ray back out. Therefore, the Karlsruhe distance between two points is the minimum of the two lengths that would be obtained for these two types of path. That is, it equals where are the polar coordinates of and is the angular distance between the two points.

Remove ads

See also

Notes

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads