Keras

Neural network library From Wikipedia, the free encyclopedia

Keras

Keras is an open-source library that provides a Python interface for artificial neural networks. Keras was first independent software, then integrated into the TensorFlow library, and later supporting more. "Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers, models, or metrics that can be used in native workflows in JAX, TensorFlow, or PyTorch — with one codebase."[2] Keras 3 will be the default Keras version for TensorFlow 2.16 onwards, but Keras 2 can still be used.[3]

Quick Facts Original author(s), Developer(s) ...
Keras
Original author(s)François Chollet
Developer(s)ONEIROS
Initial release27 March 2015; 9 years ago (2015-03-27)
Stable release
3.8.0[1] / 7 January 2025; 2 months ago (7 January 2025)
Repository
Written inPython
PlatformCross-platform
TypeFrontend for TensorFlow, JAX or PyTorch (and more)
LicenseApache 2.0
Websitekeras.io 
Close

History

The name 'Keras' derives from the Ancient Greek word κέρας (Keras) meaning 'horn'.[4]

Designed to enable fast experimentation with deep neural networks, Keras focuses on being user-friendly, modular, and extensible. It was developed as part of the research effort of project ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System),[5] and its primary author and maintainer is François Chollet, a Google engineer. Chollet is also the author of the Xception deep neural network model.[6]

Up until version 2.3, Keras supported multiple backends, including TensorFlow, Microsoft Cognitive Toolkit, Theano, and PlaidML.[7][8][9]

As of version 2.4, only TensorFlow was supported. Starting with version 3.0 (as well as its preview version, Keras Core), however, Keras has become multi-backend again, supporting TensorFlow, JAX, and PyTorch.[10] It now also supports OpenVINO!.

Features

Keras contains numerous implementations of commonly used neural-network building blocks such as layers, objectives, activation functions, optimizers, and a host of tools for working with image and text data to simplify programming in deep neural network area.[11] The code is hosted on GitHub, and community support forums include the GitHub issues page, and a Slack channel.[citation needed]

In addition to standard neural networks, Keras has support for convolutional and recurrent neural networks. It supports other common utility layers like dropout, batch normalization, and pooling.[12]

Keras allows users to produce deep models on smartphones (iOS and Android), on the web, or on the Java Virtual Machine.[8] It also allows use of distributed training of deep-learning models on clusters of graphics processing units (GPU) and tensor processing units (TPU).[13]

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.