Kernel-independent component analysis
From Wikipedia, the free encyclopedia
In statistics, kernel-independent component analysis (kernel ICA) is an efficient algorithm for independent component analysis which estimates source components by optimizing a generalized variance contrast function, which is based on representations in a reproducing kernel Hilbert space.[1][2] Those contrast functions use the notion of mutual information as a measure of statistical independence.
Main idea
Kernel ICA is based on the idea that correlations between two random variables can be represented in a reproducing kernel Hilbert space (RKHS), denoted by , associated with a feature map defined for a fixed . The -correlation between two random variables and is defined as
where the functions range over and
for fixed .[1] Note that the reproducing property implies that for fixed and .[3] It follows then that the -correlation between two independent random variables is zero.
This notion of -correlations is used for defining contrast functions that are optimized in the Kernel ICA algorithm. Specifically, if is a prewhitened data matrix, that is, the sample mean of each column is zero and the sample covariance of the rows is the dimensional identity matrix, Kernel ICA estimates a dimensional orthogonal matrix so as to minimize finite-sample -correlations between the columns of .
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.