Not to be confused with Laguerre transformations.In mathematics, Laguerre transform is an integral transform named after the mathematician Edmond Laguerre, which uses generalized Laguerre polynomials L n α ( x ) {\displaystyle L_{n}^{\alpha }(x)} as kernels of the transform.[1][2][3][4] The Laguerre transform of a function f ( x ) {\displaystyle f(x)} is L { f ( x ) } = f ~ α ( n ) = ∫ 0 ∞ e − x x α L n α ( x ) f ( x ) d x {\displaystyle L\{f(x)\}={\tilde {f}}_{\alpha }(n)=\int _{0}^{\infty }e^{-x}x^{\alpha }\ L_{n}^{\alpha }(x)\ f(x)\ dx} The inverse Laguerre transform is given by L − 1 { f ~ α ( n ) } = f ( x ) = ∑ n = 0 ∞ ( n + α n ) − 1 1 Γ ( α + 1 ) f ~ α ( n ) L n α ( x ) {\displaystyle L^{-1}\{{\tilde {f}}_{\alpha }(n)\}=f(x)=\sum _{n=0}^{\infty }{\binom {n+\alpha }{n}}^{-1}{\frac {1}{\Gamma (\alpha +1)}}{\tilde {f}}_{\alpha }(n)L_{n}^{\alpha }(x)} Remove adsSome Laguerre transform pairs More information , ... f ( x ) {\displaystyle f(x)\,} f ~ α ( n ) {\displaystyle {\tilde {f}}_{\alpha }(n)\,} x a − 1 , a > 0 {\displaystyle x^{a-1},\ a>0\,} Γ ( a + α ) Γ ( n − a + 1 ) n ! Γ ( 1 − a ) {\displaystyle {\frac {\Gamma (a+\alpha )\Gamma (n-a+1)}{n!\Gamma (1-a)}}} e − a x , a > − 1 {\displaystyle e^{-ax},\ a>-1\,} Γ ( n + α + 1 ) a n n ! ( a + 1 ) n + α + 1 {\displaystyle {\frac {\Gamma (n+\alpha +1)a^{n}}{n!(a+1)^{n+\alpha +1}}}} sin a x , a > 0 , α = 0 {\displaystyle \sin ax,\ a>0,\ \alpha =0\,} a n ( 1 + a 2 ) n + 1 2 sin [ n tan − 1 1 a + tan − 1 ( − a ) ] {\displaystyle {\frac {a^{n}}{(1+a^{2})^{\frac {n+1}{2}}}}\sin \left[n\tan ^{-1}{\frac {1}{a}}+\tan ^{-1}(-a)\right]} cos a x , a > 0 , α = 0 {\displaystyle \cos ax,\ a>0,\ \alpha =0\,} a n ( 1 + a 2 ) n + 1 2 cos [ n tan − 1 1 a + tan − 1 ( − a ) ] {\displaystyle {\frac {a^{n}}{(1+a^{2})^{\frac {n+1}{2}}}}\cos \left[n\tan ^{-1}{\frac {1}{a}}+\tan ^{-1}(-a)\right]} L m α ( x ) {\displaystyle L_{m}^{\alpha }(x)\,} ( n + α n ) Γ ( α + 1 ) δ m n {\displaystyle {\binom {n+\alpha }{n}}\Gamma (\alpha +1)\delta _{mn}} e − a x L m α ( x ) {\displaystyle e^{-ax}L_{m}^{\alpha }(x)\,} Γ ( n + α + 1 ) Γ ( m + α + 1 ) n ! m ! Γ ( α + 1 ) ( a − 1 ) n − m + α + 1 a n + m + 2 α + 2 2 F 1 ( n + α + 1 ; m + α + 1 α + 1 ; 1 a 2 ) {\displaystyle {\frac {\Gamma (n+\alpha +1)\Gamma (m+\alpha +1)}{n!m!\Gamma (\alpha +1)}}{\frac {(a-1)^{n-m+\alpha +1}}{a^{n+m+2\alpha +2}}}{}_{2}F_{1}\left(n+\alpha +1;{\frac {m+\alpha +1}{\alpha +1}};{\frac {1}{a^{2}}}\right)} [5] f ( x ) x β − α {\displaystyle f(x)x^{\beta -\alpha }\,} ∑ m = 0 n ( m ! ) − 1 ( α − β ) m L n − m β ( x ) {\displaystyle \sum _{m=0}^{n}(m!)^{-1}(\alpha -\beta )_{m}L_{n-m}^{\beta }(x)} e x x − α Γ ( α , x ) {\displaystyle e^{x}x^{-\alpha }\Gamma (\alpha ,x)\,} ∑ n = 0 ∞ ( n + α n ) Γ ( α + 1 ) n + 1 {\displaystyle \sum _{n=0}^{\infty }{\binom {n+\alpha }{n}}{\frac {\Gamma (\alpha +1)}{n+1}}} x β , β > 0 {\displaystyle x^{\beta },\ \beta >0\,} Γ ( α + β + 1 ) ∑ n = 0 ∞ ( n + α n ) ( − β ) n Γ ( α + 1 ) Γ ( n + α + 1 ) {\displaystyle \Gamma (\alpha +\beta +1)\sum _{n=0}^{\infty }{\binom {n+\alpha }{n}}(-\beta )_{n}{\frac {\Gamma (\alpha +1)}{\Gamma (n+\alpha +1)}}} ( 1 − z ) − ( α + 1 ) exp ( x z z − 1 ) , | z | < 1 , α ≥ 0 {\displaystyle (1-z)^{-(\alpha +1)}\exp \left({\frac {xz}{z-1}}\right),\ |z|<1,\ \alpha \geq 0\,} ∑ n = 0 ∞ ( n + α n ) Γ ( α + 1 ) z n {\displaystyle \sum _{n=0}^{\infty }{\binom {n+\alpha }{n}}\Gamma (\alpha +1)z^{n}} ( x z ) − α / 2 e z J α [ 2 ( x z ) 1 / 2 ] , | z | < 1 , α ≥ 0 {\displaystyle (xz)^{-\alpha /2}e^{z}J_{\alpha }\left[2(xz)^{1/2}\right],\ |z|<1,\ \alpha \geq 0\,} ∑ n = 0 ∞ ( n + α n ) Γ ( α + 1 ) Γ ( n + α + 1 ) z n {\displaystyle \sum _{n=0}^{\infty }{\binom {n+\alpha }{n}}{\frac {\Gamma (\alpha +1)}{\Gamma (n+\alpha +1)}}z^{n}} d d x f ( x ) {\displaystyle {\frac {d}{dx}}f(x)\,} f ~ α ( n ) − α ∑ k = 0 n f ~ α − 1 ( k ) + ∑ k = 0 n − 1 f ~ α ( k ) {\displaystyle {\tilde {f}}_{\alpha }(n)-\alpha \sum _{k=0}^{n}{\tilde {f}}_{\alpha -1}(k)+\sum _{k=0}^{n-1}{\tilde {f}}_{\alpha }(k)} x d d x f ( x ) , α = 0 {\displaystyle x{\frac {d}{dx}}f(x),\alpha =0\,} − ( n + 1 ) f ~ 0 ( n + 1 ) + n f ~ 0 ( n ) {\displaystyle -(n+1){\tilde {f}}_{0}(n+1)+n{\tilde {f}}_{0}(n)} ∫ 0 x f ( t ) d t , α = 0 {\displaystyle \int _{0}^{x}f(t)dt,\ \alpha =0\,} f ~ 0 ( n ) − f ~ 0 ( n − 1 ) {\displaystyle {\tilde {f}}_{0}(n)-{\tilde {f}}_{0}(n-1)} e x x − α d d x [ e − x x α + 1 d d x ] f ( x ) {\displaystyle e^{x}x^{-\alpha }{\frac {d}{dx}}\left[e^{-x}x^{\alpha +1}{\frac {d}{dx}}\right]f(x)\,} − n f ~ α ( n ) {\displaystyle -n{\tilde {f}}_{\alpha }(n)} { e x x − α d d x [ e − x x α + 1 d d x ] } k f ( x ) {\displaystyle \left\{e^{x}x^{-\alpha }{\frac {d}{dx}}\left[e^{-x}x^{\alpha +1}{\frac {d}{dx}}\right]\right\}^{k}f(x)\,} ( − 1 ) k n k f ~ α ( n ) {\displaystyle (-1)^{k}n^{k}{\tilde {f}}_{\alpha }(n)} L n α ( x ) , α > − 1 {\displaystyle L_{n}^{\alpha }(x),\alpha >-1\,} Γ ( n + α + 1 ) n ! {\displaystyle {\frac {\Gamma (n+\alpha +1)}{n!}}} x L n α ( x ) , α > − 1 {\displaystyle xL_{n}^{\alpha }(x),\alpha >-1\,} Γ ( n + α + 1 ) n ! ( 2 n + 1 + α ) {\displaystyle {\frac {\Gamma (n+\alpha +1)}{n!}}(2n+1+\alpha )} 1 π ∫ 0 ∞ e − t f ( t ) d t ∫ 0 π e x t cos θ cos ( x t sin θ ) g ( x + t − 2 x t cos θ ) d θ , α = 0 {\displaystyle {\frac {1}{\pi }}\int _{0}^{\infty }e^{-t}f(t)dt\int _{0}^{\pi }e^{{\sqrt {xt}}\cos \theta }\cos({\sqrt {xt}}\sin \theta )g(x+t-2{\sqrt {xt}}\cos \theta )d\theta ,\alpha =0\,} f ~ 0 ( n ) g ~ 0 ( n ) {\displaystyle {\tilde {f}}_{0}(n){\tilde {g}}_{0}(n)} Γ ( n + α + 1 ) π Γ ( n + 1 ) ∫ 0 ∞ e − t t α f ( t ) d t ∫ 0 π e − x t cos θ sin 2 α θ g ( x + t + 2 x t cos θ ) J α − 1 / 2 ( x t sin θ ) [ ( x t sin θ ) / 2 ] α − 1 / 2 d θ {\displaystyle {\frac {\Gamma (n+\alpha +1)}{{\sqrt {\pi }}\Gamma (n+1)}}\int _{0}^{\infty }e^{-t}t^{\alpha }f(t)dt\int _{0}^{\pi }e^{-{\sqrt {xt}}\cos \theta }\sin ^{2\alpha }\theta g(x+t+2{\sqrt {xt}}\cos \theta ){\frac {J_{\alpha -1/2}({\sqrt {xt}}\sin \theta )}{[({\sqrt {xt}}\sin \theta )/2]^{\alpha -1/2}}}d\theta \,} f ~ α ( n ) g ~ α ( n ) {\displaystyle {\tilde {f}}_{\alpha }(n){\tilde {g}}_{\alpha }(n)} [6] Close Remove adsReferencesLoading content...Loading related searches...Wikiwand - on Seamless Wikipedia browsing. On steroids.Remove ads