Top Qs
Timeline
Chat
Perspective

Laminar set family

From Wikipedia, the free encyclopedia

Laminar set family
Remove ads

In combinatorics, a laminar set family is a set family in which each pair of sets are either disjoint or related by containment.[1][2] Formally, a set family {S1, S2, ...} is called laminar if for every i, j, the intersection of Si and Sj is either empty, or equals Si, or equals Sj.

Thumb
All hyperedges here are either disjoint or related by containment. Edge 1 contains edge 4, and edges 3 and 5 contain each other. The set of hyperedges therefore forms a laminar set family.

Let E be a ground-set of elements. A laminar set-family on E can be constructed by recursively partitioning E into parts and sub-parts. In particular, the singleton family {E} is laminar; if we partition E into some k pairwise-disjoint parts E1,...,Ek, then {E, E1,...,Ek} is laminar too; if we now partition e.g. E1 into E11, E12, ... E1j, then adding these sub-parts yields another laminar family; etc. Hence, a laminar set-family can be seen as a partitioning of the ground-set into categories and sub-categories.

The same notion can be applied to hypergraphs to define "laminar hypergraphs" as those whose set of hyperedges forms a laminar set family.[3]

Remove ads

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads