Top Qs
Timeline
Chat
Perspective

Large Interferometer For Exoplanets

From Wikipedia, the free encyclopedia

Remove ads

Large Interferometer For Exoplanets (LIFE) is a project started in 2017 to develop the science, technology and a roadmap for a space mission to detect and characterize the atmospheres of dozens of warm, terrestrial extrasolar planets. The current plan is for a nulling interferometer operating in the mid-infrared.[1][2][3][4][5][6]

Quick facts Mission type, Website ...

The LIFE space observatory concept is different from previous space missions, which covered a similar wavelength regime in the mid-infrared (MIR). This includes recent missions such as James Webb Space Telescope, Spitzer Space Telescope, and older missions such as ISO, IRAS, and AKARI.

Remove ads

Atmospheric Biosignatures

When present in sufficient quantities in the atmosphere, chemicals that are indicators of life are known as atmospheric biomarkers. The LIFE Mission is designed to observe in the mid-infrared light, where many of these molecules show spectral features.

LIFE research papers

  1. Improved exoplanet detection yield estimates for a large mid-infrared space-interferometer mission
  2. Signal simulation, signal extraction and fundamental exoplanet parameters from single epoch observations
  3. Spectral resolution, wavelength range and sensitivity requirements based on atmospheric retrieval analyses of an exo-Earth  
  4. Diagnostic potential of a mid-infrared space-interferometer for studying Earth analogs
  5. Ideal kernel-nulling array architectures for a space-based mid-infrared nulling interferometer
  6. Practical implementation of a kernel-nulling beam combiner with a discussion on instrumental uncertainties and redundancy benefits
Remove ads

References

See also

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads