Top Qs
Timeline
Chat
Perspective

Legendre wavelet

Type of wavelet From Wikipedia, the free encyclopedia

Remove ads

In functional analysis, compactly supported wavelets derived from Legendre polynomials are termed Legendre wavelets or spherical harmonic wavelets.[1] Legendre functions have widespread applications in which spherical coordinate system is appropriate.[2][3][4] As with many wavelets there is no nice analytical formula for describing these harmonic spherical wavelets. The low-pass filter associated to Legendre multiresolution analysis is a finite impulse response (FIR) filter.

Wavelets associated to FIR filters are commonly preferred in most applications.[3] An extra appealing feature is that the Legendre filters are linear phase FIR (i.e. multiresolution analysis associated with linear phase filters). These wavelets have been implemented on MATLAB (wavelet toolbox). Although being compactly supported wavelet, legdN are not orthogonal (but for N = 1).[5]

Remove ads

Legendre multiresolution filters

Summarize
Perspective

Associated Legendre polynomials are the colatitudinal part of the spherical harmonics which are common to all separations of Laplace's equation in spherical polar coordinates.[2] The radial part of the solution varies from one potential to another, but the harmonics are always the same and are a consequence of spherical symmetry. Spherical harmonics are solutions of the Legendre -order differential equation, n integer:

polynomials can be used to define the smoothing filter of a multiresolution analysis (MRA).[6] Since the appropriate boundary conditions for an MRA are and , the smoothing filter of an MRA can be defined so that the magnitude of the low-pass can be associated to Legendre polynomials according to:

Illustrative examples of filter transfer functions for a Legendre MRA are shown in figure 1, for A low-pass behaviour is exhibited for the filter H, as expected. The number of zeroes within is equal to the degree of the Legendre polynomial. Therefore, the roll-off of side-lobes with frequency is easily controlled by the parameter .

Thumb
Figure 1 - Magnitude of the transfer function for Legendre multiresolution smoothing filters. Filter for orders 1, 3, and 5.

The low-pass filter transfer function is given by

The transfer function of the high-pass analysing filter is chosen according to Quadrature mirror filter condition,[6][7] yielding:

Indeed, and , as expected.

Remove ads

Legendre multiresolution filter coefficients

Summarize
Perspective

A suitable phase assignment is done so as to properly adjust the transfer function to the form

The filter coefficients are given by:

from which the symmetry:

follows. There are just non-zero filter coefficients on , so that the Legendre wavelets have compact support for every odd integer .

Table I - Smoothing Legendre FIR filter coefficients for ( is the wavelet order.)
N.B. The minus signal can be suppressed.
Remove ads

References

Bibliography

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads