Lexicographic code
From Wikipedia, the free encyclopedia
Lexicographic codes or lexicodes are greedily generated error-correcting codes with remarkably good properties. They were produced independently by Vladimir Levenshtein[1] and by John Horton Conway and Neil Sloane.[2] The binary lexicographic codes are linear codes, and include the Hamming codes and the binary Golay codes.[2]
Construction
Summarize
Perspective
A lexicode of length n and minimum distance d over a finite field is generated by starting with the all-zero vector and iteratively adding the next vector (in lexicographic order) of minimum Hamming distance d from the vectors added so far. As an example, the length-3 lexicode of minimum distance 2 would consist of the vectors marked by an "X" in the following example:
Vector | In code? |
---|---|
000 | X |
001 | |
010 | |
011 | X |
100 | |
101 | X |
110 | X |
111 |
Here is a table of all n-bit lexicode by d-bit minimal hamming distance, resulting of maximum 2m codewords dictionnary. For example, F4 code (n=4,d=2,m=3), extended Hamming code (n=8,d=4,m=4) and especially Golay code (n=24,d=8,m=12) shows exceptional compactness compared to neighbors.
n \ d | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | |||||||||||||||||
2 | 2 | 1 | ||||||||||||||||
3 | 3 | 2 | 1 | |||||||||||||||
4 | 4 | 3 | 1 | 1 | ||||||||||||||
5 | 5 | 4 | 2 | 1 | 1 | |||||||||||||
6 | 6 | 5 | 3 | 2 | 1 | 1 | ||||||||||||
7 | 7 | 6 | 4 | 3 | 1 | 1 | 1 | |||||||||||
8 | 8 | 7 | 4 | 4 | 2 | 1 | 1 | 1 | ||||||||||
9 | 9 | 8 | 5 | 4 | 2 | 2 | 1 | 1 | 1 | |||||||||
10 | 10 | 9 | 6 | 5 | 3 | 2 | 1 | 1 | 1 | 1 | ||||||||
11 | 11 | 10 | 7 | 6 | 4 | 3 | 2 | 1 | 1 | 1 | 1 | |||||||
12 | 12 | 11 | 8 | 7 | 4 | 4 | 2 | 2 | 1 | 1 | 1 | 1 | ||||||
13 | 13 | 12 | 9 | 8 | 5 | 4 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | |||||
14 | 14 | 13 | 10 | 9 | 6 | 5 | 4 | 3 | 2 | 1 | 1 | 1 | 1 | 1 | ||||
15 | 15 | 14 | 11 | 10 | 7 | 6 | 5 | 4 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | |||
16 | 16 | 15 | 11 | 11 | 8 | 7 | 5 | 5 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | ||
17 | 17 | 16 | 12 | 11 | 9 | 8 | 6 | 5 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | |
18 | 18 | 17 | 13 | 12 | 9 | 9 | 7 | 6 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
19 | 19 | 18 | 14 | 13 | 10 | 9 | 8 | 7 | 4 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
20 | 20 | 19 | 15 | 14 | 11 | 10 | 9 | 8 | 5 | 4 | 3 | 2 | 2 | 1 | 1 | 1 | 1 | 1 |
21 | 21 | 20 | 16 | 15 | 12 | 11 | 10 | 9 | 5 | 5 | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 1 |
22 | 22 | 21 | 17 | 16 | 12 | 12 | 11 | 10 | 6 | 5 | 4 | 3 | 2 | 2 | 1 | 1 | 1 | 1 |
23 | 23 | 22 | 18 | 17 | 13 | 12 | 12 | 11 | 6 | 6 | 5 | 4 | 2 | 2 | 2 | 1 | 1 | 1 |
24 | 24 | 23 | 19 | 18 | 14 | 13 | 12 | 12 | 7 | 6 | 5 | 5 | 3 | 2 | 2 | 2 | 1 | 1 |
25 | 25 | 24 | 20 | 19 | 15 | 14 | 12 | 12 | 8 | 7 | 6 | 5 | 3 | 3 | 2 | 2 | 1 | 1 |
26 | 26 | 25 | 21 | 20 | 16 | 15 | 12 | 12 | 9 | 8 | 7 | 6 | 4 | 3 | 2 | 2 | 2 | 1 |
27 | 27 | 26 | 22 | 21 | 17 | 16 | 13 | 12 | 9 | 9 | 7 | 7 | 5 | 4 | 3 | 2 | 2 | 2 |
28 | 28 | 27 | 23 | 22 | 18 | 17 | 13 | 13 | 10 | 9 | 8 | 7 | 5 | 5 | 3 | 3 | 2 | 2 |
29 | 29 | 28 | 24 | 23 | 19 | 18 | 14 | 13 | 11 | 10 | 8 | 8 | 6 | 5 | 4 | 3 | 2 | 2 |
30 | 30 | 29 | 25 | 24 | 19 | 19 | 15 | 14 | 12 | 11 | 9 | 8 | 6 | 6 | 5 | 4 | 2 | 2 |
31 | 31 | 30 | 26 | 25 | 20 | 19 | 16 | 15 | 12 | 12 | 10 | 9 | 6 | 6 | 6 | 5 | 3 | 2 |
32 | 32 | 31 | 26 | 26 | 21 | 20 | 16 | 16 | 13 | 12 | 11 | 10 | 7 | 6 | 6 | 6 | 3 | 3 |
33 | ... | 32 | ... | 26 | ... | 21 | ... | 16 | ... | 13 | ... | 11 | ... | 7 | ... | 6 | ... | 3 |
All odd d-bit lexicode distances are exact copies of the even d+1 bit distances minus the last dimension, so an odd-dimensional space can never create something new or more interesting than the d+1 even-dimensional space above.
Since lexicodes are linear, they can also be constructed by means of their basis.[3]
Implementation
Summarize
Perspective
Following C generate lexicographic code and parameters are set for the Golay code (N=24, D=8).
#include <stdio.h>
#include <stdlib.h>
int main() { /* GOLAY CODE generation */
int i, j, k;
int _pc[1<<16] = {0}; // PopCount Macro
for (i=0; i < (1<<16); i++)
for (j=0; j < 16; j++)
_pc[i] += (i>>j)&1;
#define pc(X) (_pc[(X)&0xffff] + _pc[((X)>>16)&0xffff])
#define N 24 // N bits
#define D 8 // D bits distance
unsigned int * z = malloc(1<<29);
for (i=j=0; i < (1<<N); i++)
{ // Scan all previous
for (k=j-1; k >= 0; k--) // lexicodes.
if (pc(z[k]^i) < D) // Reverse checking
break; // is way faster...
if (k == -1) { // Add new lexicode
for (k=0; k < N; k++) // & print it
printf("%d", (i>>k)&1);
printf(" : %d\n", j);
z[j++] = i;
}
}
}
Combinatorial game theory
The theory of lexicographic codes is closely connected to combinatorial game theory. In particular, the codewords in a binary lexicographic code of distance d encode the winning positions in a variant of Grundy's game, played on a collection of heaps of stones, in which each move consists of replacing any one heap by at most d ā 1 smaller heaps, and the goal is to take the last stone.[2]
Notes
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.