Lindemann index
From Wikipedia, the free encyclopedia
The Lindemann index[1] is a simple measure of thermally driven disorder in atoms or molecules.
Definition
Summarize
Perspective
The local Lindemann index is defined as:[2]
where angle brackets indicate a time average. The global Lindemann index is a system average of this quantity.
- In condensed matter physics
- a departure from linearity in the behaviour of the global Lindemann index or an increase above a threshold value related to the spacing between atoms (or micelles, particles, globules, etc.) is often taken as the indication that a solid-liquid phase transition has taken place. See Lindemann melting criterion.
- Biomolecules
- often possess separate regions with different order characteristics. In order to quantify or illustrate local disorder, the local Lindemann index can be used.[3]
Factors when using the Lindemann index
Care must be taken if the molecule possesses globally defined dynamics, such as about a hinge or pivot, because these motions will obscure the local motions which the Lindemann index is designed to quantify. An appropriate tactic in this circumstance is to sum the rij only over a small number of neighbouring atoms to arrive at each qi. A further variety of such modifications to the Lindemann index are available and have different merits, e.g. for the study of glassy vs crystalline materials.[4]
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.