Top Qs
Timeline
Chat
Perspective

List of Laplace transforms

From Wikipedia, the free encyclopedia

Remove ads

The following is a list of Laplace transforms for many common functions of a single variable.[1] The Laplace transform is an integral transform that takes a function of a positive real variable t (often time) to a function of a complex variable s (complex angular frequency).

Properties

Summarize
Perspective

The Laplace transform of a function can be obtained using the formal definition of the Laplace transform. However, some properties of the Laplace transform can be used to obtain the Laplace transform of some functions more easily.

Linearity

For functions and and for scalar , the Laplace transform satisfies

and is, therefore, regarded as a linear operator.

Time shifting

The Laplace transform of is .

Frequency shifting

The Laplace transform of is .

Remove ads

Explanatory notes

Summarize
Perspective

The unilateral Laplace transform takes as input a function whose time domain is the non-negative reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t).

The entries of the table that involve a time delay τ are required to be causal (meaning that τ > 0). A causal system is a system where the impulse response h(t) is zero for all time t prior to t = 0. In general, the region of convergence for causal systems is not the same as that of anticausal systems.

The following functions and variables are used in the table below:

Remove ads

Table

More information ...
Remove ads

See also

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads