Top Qs
Timeline
Chat
Perspective
List of extinction events
From Wikipedia, the free encyclopedia
Remove ads
This is a list of extinction events, both mass and minor:[1]
"Big Five" major extinction events (see graphic)
More information Period or supereon, Extinction ...
Period or supereon | Extinction | Date | Probable causes[2] |
---|---|---|---|
Quaternary | Holocene extinction | c. 10,000 BC – Ongoing | Humans[3] |
Quaternary extinction event | 640,000, 74,000, and 13,000 years ago | Unknown; may include climate changes, massive volcanic eruptions and Humans (largely by human overhunting)[4][5][6] | |
Neogene | Pliocene–Pleistocene boundary extinction | 2 Ma | Possible causes include a supernova[7][8] or the Eltanin impact[9][10] |
Middle Miocene disruption | 14.5 Ma | Climate change due to change of ocean circulation patterns. Milankovitch cycles may have also contributed[11] | |
Paleogene | Eocene–Oligocene extinction event | 33.9 Ma | Multiple causes including global cooling, polar glaciation, falling sea levels, and the Popigai impactor[12] |
Cretaceous | Cretaceous–Paleogene extinction event | 66 Ma | Chicxulub impactor; the volcanism which resulted in the formation of the Deccan Traps may have contributed.[13] |
Cenomanian-Turonian boundary event | 94 Ma | Most likely underwater volcanism associated with the Caribbean large igneous province, which would have caused global warming and acidic oceans[14] | |
Aptian extinction | 117 Ma | Unknown, but may be due to volcanism of the Rajmahal Traps[15] | |
Jurassic | End-Jurassic (Tithonian) | 145 Ma | No longer regarded as a major extinction but rather a series of lesser events due to bolide impacts, eruptions of flood basalts, climate change and disruptions to oceanic systems[16] |
Pliensbachian-Toarcian extinction (Toarcian turnover) | 186-178 Ma | Formation of the Karoo-Ferrar Igneous Provinces[17] | |
Triassic | Triassic–Jurassic extinction event | 201 Ma | Possible causes include gradual climate changes, volcanism from the Central Atlantic magmatic province[18] or an impactor[19] |
Carnian Pluvial Event | 230 Ma | Wrangellia flood basalts,[20] or the uplift of the Cimmerian orogeny | |
Olenekian-Anisian boundary event | 247 Ma | Ocean acidification[21] | |
Smithian-Spathian boundary event | 249 Ma | Late eruptions of the Siberian Traps | |
Griesbachian-Dienerian boundary-event | 252 | Late eruptions of the Siberian Traps[22] | |
Permian | Permian–Triassic extinction event | 252 Ma | Large igneous province (LIP) eruptions [23] from the Siberian Traps,[24] an impact event (the Wilkes Land Crater),[25] an Anoxic event,[26] an Ice age,[27] or other possible causes |
End-Capitanian extinction event | 260 Ma | Volcanism from the Emeishan Traps,[28] resulting in global cooling and other effects | |
Olson's Extinction | 270 Ma | Unknown.[29][30][31] Possibly a change in climate, but evidence for this is weak.[32] This event may actually be a slow decline over 20 Ma.[33] | |
Carboniferous | Carboniferous rainforest collapse | 305 Ma | Possibilities include a series of rapid changes in climate, or volcanism of the Skagerrak-Centered Large Igneous Province[34] |
Serpukhovian extinction | ~ 325 Ma | Onset of the Late Paleozoic icehouse | |
Devonian | Hangenberg event | 359 Ma | Anoxia, possibly related to the Famennian glaciation or volcanic activity, Supernova[35] |
Late Devonian extinction (Kellwasser event) | 372 Ma | Viluy Traps[36][37][38] Woodleigh Impactor?[2] | |
Taghanic Event | ~384 Ma | Anoxia | |
Kačák Event | ~388 Ma | Anoxia | |
Silurian | Lau event | 420 Ma | Changes in sea level and chemistry?[39] |
Mulde event | 424 Ma | Global drop in sea level?[40] | |
Ireviken event | 428 Ma | Deep-ocean anoxia;[41] Milankovitch cycles?[42] | |
Ordovician | Late Ordovician mass extinction | 445-444 Ma | Global cooling and sea level drop, and/or global warming related to volcanism and anoxia[43] |
Cambrian | Cambrian–Ordovician extinction event | 488 Ma | Kalkarindji Large Igneous Province?[44] |
Dresbachian extinction event | 502 Ma | ||
End-Botomian extinction event | 517 Ma | ||
Precambrian | End-Ediacaran extinction | 542 Ma | Anoxic event[45] |
Great Oxygenation Event | 2400 Ma | Rising oxygen levels in the atmosphere due to the development of photosynthesis as well as possible Snowball Earth event. (see: Huronian glaciation.) |
Close
The blue graph shows the apparent percentage (not the absolute number) of marine animal genera becoming extinct during any given time interval. It does not represent all marine species, just those that are readily fossilized. The labels of the traditional "Big Five" extinction events and the more recently recognised Capitanian mass extinction event are clickable links; see Extinction event for more details. (source and image info)
Remove ads
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads
Remove ads