List of fusion experiments

List of efforts toward artificial nuclear fusion From Wikipedia, the free encyclopedia

List of fusion experiments

Experiments directed toward developing fusion power are invariably done with dedicated machines which can be classified according to the principles they use to confine the plasma fuel and keep it hot.

Thumb
Target chamber of the Shiva laser, used for inertial confinement fusion experiments from 1978 until decommissioned in 1981
Thumb
Plasma chamber of TFTR, used for magnetic confinement fusion experiments, which produced 11 MW of fusion power in 1994

The major division is between magnetic confinement and inertial confinement. In magnetic confinement, the tendency of the hot plasma to expand is counteracted by the Lorentz force between currents in the plasma and magnetic fields produced by external coils. The particle densities tend to be in the range of 1018 to 1022 m−3 and the linear dimensions in the range of 0.1 to 10 m. The particle and energy confinement times may range from under a millisecond to over a second, but the configuration itself is often maintained through input of particles, energy, and current for times that are hundreds or thousands of times longer. Some concepts are capable of maintaining a plasma indefinitely.

In contrast, with inertial confinement, there is nothing to counteract the expansion of the plasma. The confinement time is simply the time it takes the plasma pressure to overcome the inertia of the particles, hence the name. The densities tend to be in the range of 1031 to 1033 m−3 and the plasma radius in the range of 1 to 100 micrometers. These conditions are obtained by irradiating a millimeter-sized solid pellet with a nanosecond laser or ion pulse. The outer layer of the pellet is ablated, providing a reaction force that compresses the central 10% of the fuel by a factor of 10 or 20 to 103 or 104 times solid density. These microplasmas disperse in a time measured in nanoseconds. For a fusion power reactor, a repetition rate of several per second will be needed.

Magnetic confinement

Summarize
Perspective

Within the field of magnetic confinement experiments, there is a basic division between toroidal and open magnetic field topologies. Generally speaking, it is easier to contain a plasma in the direction perpendicular to the field than parallel to it. Parallel confinement can be solved either by bending the field lines back on themselves into circles or, more commonly, toroidal surfaces, or by constricting the bundle of field lines at both ends, which causes some of the particles to be reflected by the mirror effect. The toroidal geometries can be further subdivided according to whether the machine itself has a toroidal geometry, i.e., a solid core through the center of the plasma. The alternative is to dispense with a solid core and rely on currents in the plasma to produce the toroidal field.

Mirror machines have advantages in a simpler geometry and a better potential for direct conversion of particle energy to electricity. They generally require higher magnetic fields than toroidal machines, but the biggest problem has turned out to be confinement. For good confinement there must be more particles moving perpendicular to the field than there are moving parallel to the field. Such a non-Maxwellian velocity distribution is, however, very difficult to maintain and energetically costly.

The mirrors' advantage of simple machine geometry is maintained in machines which produce compact toroids, but there are potential disadvantages for stability in not having a central conductor and there is generally less possibility to control (and thereby optimize) the magnetic geometry. Compact toroid concepts are generally less well developed than those of toroidal machines. While this does not necessarily mean that they cannot work better than mainstream concepts, the uncertainty involved is much greater.

Somewhat in a class by itself is the Z-pinch, which has circular field lines. This was one of the first concepts tried, but it did not prove very successful. Furthermore, there was never a convincing concept for turning the pulsed machine requiring electrodes into a practical reactor.

The dense plasma focus is a controversial and "non-mainstream" device that relies on currents in the plasma to produce a toroid. It is a pulsed device that depends on a plasma that is not in equilibrium and has the potential for direct conversion of particle energy to electricity. Experiments are ongoing to test relatively new theories to determine if the device has a future.

Toroidal machine

Toroidal machines can be axially symmetric, like the tokamak and the reversed field pinch (RFP), or asymmetric, like the stellarator. The additional degree of freedom gained by giving up toroidal symmetry might ultimately be usable to produce better confinement, but the cost is complexity in the engineering, the theory, and the experimental diagnostics. Stellarators typically have a periodicity, e.g. a fivefold rotational symmetry. The RFP, despite some theoretical advantages such as a low magnetic field at the coils, has not proven very successful.

Tokamak

More information Device name, Status ...
Device name[1]StatusConstructionOperationLocationOrganisationMajor/minor radiusB-fieldPlasma currentPurposeImage
T-1 (Tokamak-1)[2]Shut down19571958–1959Soviet Union MoscowKurchatov Institute0.625 m/0.13 m1 T0.04 MAFirst tokamakThumb
T-2 (Tokamak-2)[2]Recycled →FT-119591960–1970Soviet Union MoscowKurchatov Institute0.62 m/0.22 m1 T0.04 MA
T-3 (Tokamak-3)[2]Shut down19601962–?Soviet Union MoscowKurchatov Institute1 m/0.12 m3.5 T0.15 MAOvercame Bohm diffusion by a factor of 10, temperature 10 MK, confinement time 10 ms
T-5 (Tokamak-5)[2]Shut down ?1962–1970Soviet Union MoscowKurchatov Institute0.625 m/0.15 m1.2 T0.06 MAInvestigation of plasma equilibrium in vertical and horizontal direction
TM-1Shut down ? ?Soviet Union MoscowKurchatov Institute
TM-2Shut down ?1965Soviet Union MoscowKurchatov Institute
TM-3Shut down ?1970Soviet Union MoscowKurchatov Institute
FT-1[2]Recycled →CASTORT-21972–2002Soviet Union Saint PetersburgIoffe Institute0.62 m/0.22 m1.2 T0.05 MA
ST (Symmetric Tokamak)Shut downModel C1970–1974United States PrincetonPrinceton Plasma Physics Laboratory1.09 m/0.13 m5.0 T0.13 MAFirst American tokamak, converted from Model C stellarator
T-6 (Tokamak-6)Shut down ?1970–1974Soviet Union MoscowKurchatov Institute0.7 m/0.25 m1.5 T0.22 MA
TUMAN-2, 2AShut down ?1971–1985Soviet Union Saint PetersburgIoffe Institute0.4 m/0.08 m1.5 T0.012 MA
ORMAK (Oak Ridge tokaMAK)Shut down1971–1976United States Oak RidgeOak Ridge National Laboratory0.8 m/0.23 m2.5 T0.34 MAFirst to achieve 20 MK plasma temperatureThumb
Doublet IIShut down1972–1974United States San DiegoGeneral Atomics0.63 m/0.08 m0.95 T0.21 MA
ATC (Adiabatic Toroidal Compressor)Shut down1971–19721972–1976United States PrincetonPrinceton Plasma Physics Laboratory0.88 m/0.11 m2 T0.05 MADemonstrate compressional plasma heatingThumb
T-9 (Tokamak-9)Shut down ?1972–1977Soviet Union MoscowKurchatov Institute0.36 m/0.07 m1 T
TO-1Shut down ?1972–1978Soviet Union MoscowKurchatov Institute0.6 m/0.13 m1.5 T0.07 MA
Alcator A (Alto Campo Toro)Shut down ?1972–1978United States CambridgeMassachusetts Institute of Technology0.54 m/0.10 m9.0 T0.3 MA
JFT-2 (JAERI Fusion Torus 2)Shut down ?1972–1982Japan NakaJapan Atomic Energy Research Institute0.9 m/0.25 m1.8 T0.25 MA
Turbulent Tokamak Frascati (TTF, torello)Shut down1973Italy FrascatiENEA0.3 m/0.04 m1 T0.005 MAStudy of turbulent plasma heating
Pulsator[3]Shut down1970–19731973–1979Germany GarchingMax Planck Institute for Plasma Physics0.7 m/0.12 m2.7 T0.125 MADiscovery of high-density operation with tokamaks
TFR (Tokamak de Fontenay-aux-Roses)Shut down1973–1984France Fontenay-aux-RosesCEA0.98 m/0.2 m6 T0.49 MA
T-4 (Tokamak-4)[2]Shut down ?1974–1978Soviet Union MoscowKurchatov Institute0.9 m/0.16 m5 T0.3 MAObserved fast thermal quench before major plasma disruptions
Doublet IIAShut down1974–1979United States San DiegoGeneral Atomics0.66 m/0.15 m0.76 T0.35 MA
Petula-BShut down ?1974–1986France GrenobleCEA0.72 m/0.18 m2.7 T0.23 MA
T-10 (Tokamak-10)[2]Operational1975–Soviet Union MoscowKurchatov Institute1.50 m/0.37 m4 T0.8 MALargest tokamak of its timeThumb
T-11 (Tokamak-11)Shut down ?1975–1984Soviet Union MoscowKurchatov Institute0.7 m/0.25 m1 T
PLT (Princeton Large Torus)Shut down1972–19751975–1986United States PrincetonPrinceton Plasma Physics Laboratory1.32 m/0.42 m4 T0.7 MAFirst to achieve 1 MA plasma currentThumb
Divertor Injection Tokamak Experiment (DITE)Shut down1975–1989United Kingdom CulhamUnited Kingdom Atomic Energy Authority1.17 m/0.27 m2.7 T0.26 MA
JIPP T-IIShut down ?1976Japan NagoyaNagoya University0.91 m/0.17 m3 T0.16 MA
TNT-AShut down ?1976Japan TokyoTokyo University0.4 m/0.09 m0.42 T0.02 MA
T-8 (Tokamak-8)[2]Shut down ?1976–?Soviet Union MoscowKurchatov Institute0.28 m/0.048 m0.9 T0.024 MAFirst D-shaped tokamak
Microtor[4]Shut down ?1976–1983?United States Los AngelesUCLA0.3 m/0.1 m2.5 T0.12 MAPlasma impurity control and diagnostic development
Macrotor[4]Shut down ?1970s–80sUnited States Los AngelesUCLA0.9 m/0.4 m0.4 T0.1 MAUnderstanding plasma rotation driven by radial current
TUMAN-3[2]Operational ?1977–
(1990–, 3M)
Soviet Union Saint PetersburgIoffe Institute0.55 m/0.23 m3 T0.18 MAStudy adiabatic compression, RF and NB heating, H-mode and parametric instability
Thor[5]Shut down ?Italy MilanoUniversity of Milano0.52 m/0.195 m1 T0.055 MA
FT (Frascati Tokamak)Shut down1978Italy FrascatiENEA0.83 m/0.20 m10 T0.8 MA
PDX (Poloidal Divertor Experiment)Shut down ?1978–1983United States PrincetonPrinceton Plasma Physics Laboratory1.4 m/0.4 m2.4 T0.5 MA
ISX-BShut down ?1978–1984United States Oak RidgeOak Ridge National Laboratory0.93 m/0.27 m1.8 T0.2 MAAttempt high-beta operation
Doublet IIIShut down1978–1985United States San DiegoGeneral Atomics1.45 m/0.45 m2.6 T0.61 MA
T-12 (Tokamak-12)Shut down ?1978–1985Soviet Union MoscowKurchatov Institute0.36 m/0.08 m1 T0.03 MA
Alcator C (Alto Campo Toro)Shut down ?1978–1986United States CambridgeMassachusetts Institute of Technology0.64 m/0.16 m13 T0.8 MA
T-7 (Tokamak-7)[2]Recycled →HT-7[6] ?1979–1985Soviet Union MoscowKurchatov Institute1.2 m/0.31 m3 T0.3 MAFirst tokamak with superconducting toroidal field coils
ASDEX (Axially Symmetric Divertor Experiment)[7]Recycled →HL-2A1973–19801980–1990Germany GarchingMax-Planck-Institut für Plasmaphysik1.65 m/0.4 m2.8 T0.5 MADiscovery of the H-mode in 1982
FT-2[2]Operational ?1980–Soviet Union Saint PetersburgIoffe Institute0.55 m/0.08 m3 T0.05 MAH-mode physics, LH heating
TEXTOR (Tokamak Experiment for Technology Oriented Research)[8][9]Shut down1976–19801981–2013Germany JülichForschungszentrum Jülich1.75 m/0.47 m2.8 T0.8 MAStudy plasma-wall interactions
TFTR (Tokamak Fusion Test Reactor)[10]Shut down1980–19821982–1997United States PrincetonPrinceton Plasma Physics Laboratory2.4 m/0.8 m5.9 T3 MAAttempted scientific break-even, reached record fusion power of 10.7 MW and temperature of 510 MKThumb
Tokamak de Varennes (TdeV)Shut down ?1983–1997Canada MontrealNational Research Council Canada0.83 m/0.27 m1.5 T0.3 MA[11]
JFT-2M (JAERI Fusion Torus 2M)Shut down ?1983–2004Japan NakaJapan Atomic Energy Research Institute1.3 m/0.35 m2.2 T0.5 MA
JET (Joint European Torus)[12]Shut down1978–19831983–2023United Kingdom CulhamUnited Kingdom Atomic Energy Authority2.96 m/0.96 m4 T7 MARecords for fusion output power 16.1 MW (1997), fusion energy 69 MJ (2023)Thumb
Novillo[13][14]Shut downNOVA-II1983–2004Mexico Mexico CityInstituto Nacional de Investigaciones Nucleares0.23 m/0.06 m1 T0.01 MAStudy plasma-wall interactions
JT-60 (Japan Torus-60)[15]Recycled →JT-60SA1985–2010Japan NakaJapan Atomic Energy Research Institute3.4 m/1.0 m4 T3 MAHigh-beta steady-state operation, highest fusion triple product
CCT (Continuous Current Tokamak)Shut down ?1986–199?United States Los AngelesUCLA1.5 m/0.4 m0.2 T0.05 MAH-mode studies
DIII-D[16]Operational1986[17]1986–United States San DiegoGeneral Atomics1.67 m/0.67 m2.2 T3 MATokamak OptimizationThumb
STOR-M (Saskatchewan Torus-Modified)[18]Operational1987–Canada SaskatoonPlasma Physics Laboratory (Saskatchewan)0.46 m/0.125 m1 T0.06 MAStudy plasma heating and anomalous transport
T-15[2]Recycled →T-15MD1983–19881988–1995Soviet Union MoscowKurchatov Institute2.43 m/0.78 m3.6 T1 MAFirst superconducting tokamak, pulse duration 1.5 sThumb
Tore Supra[19]Recycled →WEST1988–2011France CadaracheDépartement de Recherches sur la Fusion Contrôlée2.25 m/0.7 m4.5 T2 MALarge superconducting tokamak with active cooling
ADITYA (tokamak)Operational1989–India GandhinagarInstitute for Plasma Research0.75 m/0.25 m1.2 T0.25 MA
COMPASS (COMPact ASSembly)[20][21]Operational1980–1989–Czech Republic PragueInstitute of Plasma Physics, Czech Academy of Sciences0.56 m/0.23 m2.1 T0.32 MAPlasma physics studies for ITERThumb
FTU (Frascati Tokamak Upgrade)Operational1990–Italy FrascatiENEA0.935 m/0.35 m8 T1.6 MA
START (Small Tight Aspect Ratio Tokamak)[22]Recycled →Proto-Sphera1990–1998United Kingdom CulhamUnited Kingdom Atomic Energy Authority0.3 m/?0.5 T0.31 MAFirst full-sized Spherical Tokamak
ASDEX Upgrade (Axially Symmetric Divertor Experiment)Operational1991–Germany GarchingMax-Planck-Institut für Plasmaphysik1.65 m/0.5 m2.6 T1.4 MAThumb
Alcator C-Mod (Alto Campo Toro)[23]Shut down1986–1991–2016United States CambridgeMassachusetts Institute of Technology0.68 m/0.22 m8 T2 MARecord plasma pressure 2.05 barThumb
ISTTOK (Instituto Superior Técnico TOKamak)[24]Operational1992–Portugal LisbonInstituto de Plasmas e Fusão Nuclear0.46 m/0.085 m2.8 T0.01 MA
TCV (Tokamak à Configuration Variable)[25]Operational1992–Switzerland LausanneÉcole Polytechnique Fédérale de Lausanne0.88 m/0.25 m1.43 T1.2 MAConfinement studiesThumb
HBT-EP (High Beta Tokamak-Extended Pulse)Operational1993–United States New York CityColumbia University Plasma Physics Laboratory0.92 m/0.15 m0.35 T0.03 MAHigh-Beta tokamakThumb
HT-7 (Hefei Tokamak-7)Shut down1991–1994 (T-7)1995–2013China HefeiHefei Institutes of Physical Science1.22 m/0.27 m2 T0.2 MAChina's first superconducting tokamak
Pegasus Toroidal Experiment[26]Operational ?1996–United States MadisonUniversity of Wisconsin–Madison0.45 m/0.4 m0.18 T0.3 MAExtremely low aspect ratioThumb
NSTX (National Spherical Torus Experiment)[27]Operational1999–United States Plainsboro TownshipPrinceton Plasma Physics Laboratory0.85 m/0.68 m0.3 T2 MAStudy the spherical tokamak conceptThumb
Globus-M (UNU Globus-M)[28]Operational1999–Russia Saint PetersburgIoffe Institute0.36 m/0.24 m0.4 T0.3 MAStudy the spherical tokamak concept
ET (Electric Tokamak)Recycled →ETPD19981999–2006United States Los AngelesUCLA5 m/1 m0.25 T0.045 MALargest tokamak of its timeThumb
TCABR (Tokamak Chauffage Alfvén Brésilien)Operational 1980–1999 1999– Switzerland Lausanne,
Brazil Sao Paulo
University of Sao Paulo 0.615 m / 0.18 m 1.1 T 0.10 MA Most important tokamak in the southern hemisphere Thumb
CDX-U (Current Drive Experiment-Upgrade)Recycled →LTX2000–2005United States PrincetonPrinceton Plasma Physics Laboratory0.3 m/?0.23 T0.03 MAStudy Lithium in plasma wallsThumb
MAST (Mega-Ampere Spherical Tokamak)[29]Recycled →MAST-Upgrade1997–19992000–2013United Kingdom CulhamUnited Kingdom Atomic Energy Authority0.85 m/0.65 m0.55 T1.35 MAInvestigate spherical tokamak for fusionThumb
HL-2A (Huan-Liuqi-2A)Operational2000–20022002–2018China ChengduSouthwestern Institute of Physics1.65 m/0.4 m2.7 T0.43 MAH-mode physics, ELM mitigation
SST-1 (Steady State Superconducting Tokamak)[30]Operational2001–2005–India GandhinagarInstitute for Plasma Research1.1 m/0.2 m3 T0.22 MAProduce a 1000 s elongated double null divertor plasma
EAST (Experimental Advanced Superconducting Tokamak)[31]Operational2000–20052006–China HefeiHefei Institutes of Physical Science1.85 m/0.43 m3.5 T0.5 MASuperheated plasma for over 1066 s and 20 s at 160 M°C[32][33]Thumb
J-TEXT (Joint TEXT)OperationalTEXT (Texas EXperimental Tokamak)2007–China WuhanHuazhong University of Science and Technology1.05 m/0.26 m2.0 T0.2 MADevelop plasma control
KSTAR (Korea Superconducting Tokamak Advanced Research)[34]Operational1998–20072008–South Korea DaejeonNational Fusion Research Institute1.8 m/0.5 m3.5 T2 MATokamak with fully superconducting magnets, 48 s-long operation at 100 MK[35]Thumb
LTX (Lithium Tokamak Experiment)Operational2005–20082008–United States PrincetonPrinceton Plasma Physics Laboratory0.4 m/?0.4 T0.4 MAStudy Lithium in plasma wallsThumb
QUEST (Q-shu University Experiment with Steady-State Spherical Tokamak)[36][37]Operational2008–Japan KasugaKyushu University0.68 m/0.4 m0.25 T0.02 MAStudy steady state operation of a Spherical TokamakThumb
Kazakhstan Tokamak for Material testing (KTM)Operational2000–20102010–Kazakhstan KurchatovNational Nuclear Center of the Republic of Kazakhstan0.86 m/0.43 m1 T0.75 MATesting of wall and divertor
ST25-HTS[38]Operational2012–20152015–United Kingdom CulhamTokamak Energy Ltd0.25 m/0.125 m0.1 T0.02 MASteady state plasmaThumb
WEST (Tungsten Environment in Steady-state Tokamak)Operational2013–20162016–France CadaracheDépartement de Recherches sur la Fusion Contrôlée2.5 m/0.5 m3.7 T1 MASuperconducting tokamak with active coolingThumb
ST40[39]Operational2017–20182018–United Kingdom DidcotTokamak Energy Ltd0.4 m/0.3 m3 T2 MAFirst high field spherical tokamak, reached 100 MK plasmaThumb
MAST-U (Mega-Ampere Spherical Tokamak Upgrade)[40]Operational2013–20192020–United Kingdom CulhamUnited Kingdom Atomic Energy Authority0.85 m/0.65 m0.92 T2 MATest new exhaust concepts for a spherical tokamak
HL-3 / HL-2M (Huan-Liuqi-2M)[41]Operational2018–20192020–China LeshanSouthwestern Institute of Physics1.78 m/0.65 m2.2 T1.2 MAElongated plasma with 200 MKThumb
JT-60SA (Japan Torus-60 super, advanced)[42]Operational2013–20202021–Japan NakaJapan Atomic Energy Research Institute2.96 m/1.18 m2.25 T5.5 MAOptimise plasma configurations for ITER and DEMO with full non-inductive steady-state operationThumb
T-15MDOperational2010–20202021–Russia MoscowKurchatov Institute1.48 m/0.67 m2 T2 MAHybrid fusion/fission reactorThumb
IGNITOR[43]Cancelled 2022[44]--Russia TroitzkENEA1.32 m/0.47 m13 T11 MACompact fusion reactor with self-sustained plasma and 100 MW of planned fusion power
HH70 (HongHuang 70)[45][46] Operational2022–20242024–ChinaShanghaiEnergy Singularity0.75 m/0.31 m2.5 TREBCO High-temperature superconducting coils
SPARC[47][48][49][50][51]Under construction2021–2026?United States Devens, MACommonwealth Fusion Systems and MIT Plasma Science and Fusion Center1.85 m/0.57 m12.2 T8.7 MACompact, high-field tokamak with ReBCO coils and 100 MW planned fusion powerThumb
ITER[52]Under construction2013–2034?2034?France CadaracheITER Council6.2 m/2.0 m5.3 T15 MA ?Demonstrate feasibility of fusion on a power-plant scale with 500 MW fusion powerThumb
DTT (Divertor Tokamak Test facility)[53][54][55]Planned2022–2029?2029?Italy FrascatiENEA2.19 m/0.70 m5.85 T ?5.5 MA ?Superconducting tokamak to study power exhaust
SST-2 (Steady State Tokamak-2)[56]Planned2027?India GujaratInstitute for Plasma Research4.42 m/1.47 m5.42 T11.2 MAFull-fledged fusion reactor with tritium breeding and up to 500 MW output
CFETR (China Fusion Engineering Test Reactor)[57]Planned≥20242030?ChinaInstitute of Plasma Physics, Chinese Academy of Sciences7.2 m/2.2 m ?6.5 T ?14 MA ?Bridge gaps between ITER and DEMO, planned fusion power 1000 MW
ST-F1 (Spherical Tokamak - Fusion 1)[58]Planned2027?United Kingdom DidcotTokamak Energy Ltd1.4 m/0.8 m ?4 T5 MASpherical tokamak with Q=3 and hundreds of MW planned electrical output (no longer mentioned by company as of 2024)
STX (ST80-HTS)Planned2026?2030?United Kingdom CulhamTokamak Energy LtdSpherical tokamak capable of 15min-pulsed operation[59][60]
ST-E1Planned2030s?United Kingdom CulhamTokamak Energy LtdSpherical tokamak with 200 MW planned net electric output[61]
STEP (Spherical Tokamak for Energy Production)Planned2032-20402040 D-D
Mid 2040s DT Campaign
United Kingdom West Burton, NottinghamshireUnited Kingdom Atomic Energy Authority3 m/2 m ? ?16.5 MA ?Spherical tokamak with 100 MW planned electrical output[62]
JA-DEMO Planned 2030? 2050? Japan ? 8.5 m/2.4 m[63] 5.94 T 12.3 MA Prototype for development of Commercial Fusion Reactors 1.5–2 GW Fusion output.[64]
K-DEMO (Korean fusion demonstration tokamak reactor)[65]Planned2037?South KoreaNational Fusion Research Institute6.8 m/2.1 m7 T12 MA ?Prototype for the development of commercial fusion reactors with around 2200 MW of fusion powerThumb
DEMO (DEMOnstration Power Station)Planned2040?2050? ?9 m/3 m ?6 T ?20 MA ?Prototype for a commercial fusion reactorThumb
Close

Stellarator

More information Device name, Status ...
Device nameStatusConstructionOperationTypeLocationOrganisationMajor/minor radiusB-fieldPurposeImage
Model AShut down1952–19531953–?Figure-8United States PrincetonPrinceton Plasma Physics Laboratory0.3 m/0.02 m0.1 TFirst stellarator, table-top device
Model BShut down1953–19541954–1959Figure-8United States PrincetonPrinceton Plasma Physics Laboratory0.3 m/0.02 m5 TDevelopment of plasma diagnostics
Model B-1Shut down ?–1959Figure-8United States PrincetonPrinceton Plasma Physics Laboratory0.25 m/0.02 m5 TYielded 1 MK plasma temperatures, showed cooling by X-ray radiation from impurities
Model B-2Shut down1957Figure-8United States PrincetonPrinceton Plasma Physics Laboratory0.3 m/0.02 m5 TElectron temperatures up to 10 MK
Model B-3Shut down19571958–Figure-8United States PrincetonPrinceton Plasma Physics Laboratory0.4 m/0.02 m4 TLast figure-8 device, confinement studies of ohmically heated plasma
Model B-64Shut down19551955SquareUnited States PrincetonPrinceton Plasma Physics Laboratory ? m/0.05 m1.8 T
Model B-65Shut down19571957RacetrackUnited States PrincetonPrinceton Plasma Physics Laboratory
Model B-66Shut down19581958–?RacetrackUnited States PrincetonPrinceton Plasma Physics Laboratory
Wendelstein 1-AShut down1960RacetrackGermany GarchingMax-Planck-Institut für Plasmaphysik0.35 m/0.02 m2 Tℓ=3 showed that stellarators can overcome Bohm diffusion, "Munich mystery"
Wendelstein 1-BShut down1960RacetrackGermany GarchingMax-Planck-Institut für Plasmaphysik0.35 m/0.02 m2 Tℓ=2
Model CRecycled →ST1957–19611961–1969RacetrackUnited States PrincetonPrinceton Plasma Physics Laboratory1.9 m/0.07 m3.5 TSuffered from large plasma losses by Bohm diffusion through "pump-out"
L-1Shut down19631963–1971roundSoviet Union MoscowLebedev Physical Institute0.6 m/0.05 m1 TFirst Soviet stellarator, overcame Bohm diffusion
SIRIUSShut down1964–?RacetrackSoviet Union KharkivKharkiv Institute of Physics and Technology (KIPT)
TOR-1Shut down19671967–1973Soviet Union MoscowLebedev Physical Institute0.6 m/0.05 m1 T
TOR-2Shut down ?1967–1973Soviet Union MoscowLebedev Physical Institute0.63 m/0.036 m2.5 T
Uragan-1Shut down1960–19671967–?RacetrackSoviet Union KharkivNational Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT)1.1 m/0.1 m1 TOvercame Bohm-diffusion by a factor of 30
CLASP (Closed Line And Single Particle)[66]Shut down ?1967–?United Kingdom CulhamUnited Kingdom Atomic Energy Authority0.3 m/0.056 m0.1 TStudy confinement of electrons in a high-shear stellarator
TWIST[66]Shut down ?1967–?United Kingdom CulhamUnited Kingdom Atomic Energy Authority0.32 m/0.045 m0.3 TStudy turbulent heating
Proto-CLEO[66]Shut down ?1968–?single-turn helical winding inside toroidal field conductorsUnited Kingdom Culham,
United States Madison
United Kingdom Atomic Energy Authority0.4 m/0.05 m0.5 Tconfirmed plasma confinement times of neoclassical theory
TORSO[66]Shut down ?1972–?Ultimate torsatronUnited Kingdom CulhamUnited Kingdom Atomic Energy Authority0.4 m/0.05 m2 T
CLEO[66]Shut down ?1974–?United Kingdom CulhamUnited Kingdom Atomic Energy Authority0.9 m/0.125 m2 TStudy of particle transport and beta limits, reached similar performance as tokamaks
Wendelstein 2-AShut down1965–19681968–1974HeliotronGermany GarchingMax-Planck-Institut für Plasmaphysik0.5 m/0.05 m0.6 TGood plasma confinementThumb
Saturn[67]Shut down19701970–?TorsatronSoviet Union KharkivKharkiv Institute of Physics and Technology0.36 m/0.08 m1 Tfirst Torsatron, ℓ=3, m=8 field periods, base for several torsatrons at KIPT
Wendelstein 2-BShut down ?–19701971–?HeliotronGermany GarchingMax-Planck-Institut für Plasmaphysik0.5 m/0.055 m1.25 TDemonstrated similar performance as tokamaksThumb
Vint-20[68]Shut down19721973–?TorsatronSoviet Union KharkivKharkiv Institute of Physics and Technology0.315 m/0.0725 m1.8 Tsingle-pole ℓ=1, m=13 field periods
L-2Shut down ?1975–?Soviet Union MoscowLebedev Physical Institute1 m/0.11 m2.0 T
WEGA (Wendelstein Experiment in Greifswald für die Ausbildung)Recycled →HIDRA1972–19751975–2013Classical stellaratorGermany GreifswaldMax-Planck-Institut für Plasmaphysik0.72 m/0.15 m1.4 TTest lower hybrid heatingThumb
Wendelstein 7-AShut down ?1975–1985Classical stellaratorGermany GarchingMax-Planck-Institut für Plasmaphysik2 m/0.1 m3.5 TFirst "pure" stellarator without plasma current, solved stellarator heating problem
Heliotron-EShut down ?1980–?HeliotronJapan2.2 m/0.2 m1.9 T
Heliotron-DRShut down ?1981–?HeliotronJapan0.9 m/0.07 m0.6 T
Uragan-3 (M [uk])[69]Operational ?1982–?[70]
M: 1990–
TorsatronUkraine KharkivNational Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT)1.0 m/0.12 m1.3 T ?
Auburn Torsatron (AT)Shut down ?1984–1990TorsatronUnited States AuburnAuburn University0.58 m/0.14 m0.2 TThumb
Wendelstein 7-ASShut down1982–19881988–2002Modular, advanced stellaratorGermany GarchingMax-Planck-Institut für Plasmaphysik2 m/0.13 m2.6 TFirst computer-optimized stellarator, first H-mode in a stellarator in 1992Thumb
Advanced Toroidal Facility (ATF)Shut down1984–1988[71]1988–1994TorsatronUnited States Oak RidgeOak Ridge National Laboratory2.1 m/0.27 m2.0 TFirst large American stellarator after Tokamak stampede, high-beta operation, >1h plasma operationThumb
Compact Helical System (CHS)Shut down ?1989–?HeliotronJapan TokiNational Institute for Fusion Science1 m/0.2 m1.5 T
Compact Auburn Torsatron (CAT)Shut down ?–19901990–2000TorsatronUnited States AuburnAuburn University0.53 m/0.11 m0.1 TStudy magnetic flux surfacesThumb
H-1 (Heliac-1)[72]Operational1992–HeliacAustralia Canberra,
China
Research School of Physical Sciences and Engineering, Australian National University1.0 m/0.19 m0.5 Tshipped to China in 2017Thumb
TJ-K (Tokamak de la Junta Kiel)[73]OperationalTJ-IU (1999)1994–TorsatronGermany Kiel, StuttgartUniversity of Stuttgart0.60 m/0.10 m0.5 TOne helical and two vertical coil sets; Teaching; moved from Kiel to Stuttgart in 2005
TJ-II (Tokamak de la Junta II)[74]Operational1991–19961997–flexible HeliacSpain MadridNational Fusion Laboratory, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas1.5 m/0.28 m1.2 TStudy plasma in flexible configurationThumb
LHD (Large Helical Device)[75]Operational1990–19981998–HeliotronJapan TokiNational Institute for Fusion Science3.5 m/0.6 m3 TDemonstrated long-term operation of large superconducting coilsThumb
HSX (Helically Symmetric Experiment)[76]Operational1999–Modular, quasi-helically symmetricUnited States MadisonUniversity of Wisconsin–Madison1.2 m/0.15 m1 TInvestigate plasma transport in quasi-helically-symmetric field, similar to tokamaksThumb
Heliotron J[77]Operational2000–HeliotronJapan KyotoInstitute of Advanced Energy1.2 m/0.1 m1.5 TStudy helical-axis heliotron configuration
Columbia Non-neutral Torus (CNT)Operational ?2004–Circular interlocked coilsUnited States New York CityColumbia University0.3 m/0.1 m0.2 TStudy of non-neutral (mostly electron) plasmas
Uragan-2(M)[69]Operational1988–20062006–[78]Heliotron, TorsatronUkraine KharkivNational Science Center, Kharkiv Institute of Physics and Technology (NSC KIPT)1.7 m/0.22 m2.4 Tℓ=2 Torsatron
Quasi-poloidal stellarator (QPS)[79][80]Cancelled2001–2007ModularUnited States Oak RidgeOak Ridge National Laboratory0.9 m/0.33 m1.0 TStellarator researchThumb
NCSX (National Compact Stellarator Experiment)Cancelled2004–2008HeliasUnited States PrincetonPrinceton Plasma Physics Laboratory1.4 m/0.32 m1.7 THigh-β stabilityThumb
Compact Toroidal Hybrid (CTH)Operational ?2007?–TorsatronUnited States AuburnAuburn University0.75 m/0.2 m0.7 THybrid stellarator/tokamakThumb
HIDRA (Hybrid Illinois Device for Research and Applications)[81]Operational2013–2014 (WEGA)2014– ?United States Urbana, ILUniversity of Illinois0.72 m/0.19 m0.5 TStellarator and tokamak in one device, capable of long pulse steady-state operation; study plasma-wall interactionsThumb
UST_2[82]Operational20132014–modular three period quasi-isodynamicSpain MadridCharles III University of Madrid0.29 m/0.04 m0.089 T3D-printed stellaratorThumb
Wendelstein 7-X[83]Operational1996–20222015–HeliasGermany GreifswaldMax-Planck-Institut für Plasmaphysik5.5 m/0.53 m3 TSteady-state plasma in large fully optimized stellaratorThumb
SCR-1 (Stellarator of Costa Rica)Operational2011–20152016–ModularCosta Rica CartagoCosta Rica Institute of Technology0.14 m/0.042 m0.044 TThumb
MUSE[84] Operational 2022–2023 2023– Quasiaxi-symmetrical United States Princeton Princeton Plasma Physics Laboratory 0.3 m/0.075 m 0.15 T First stellarator with permanent magnets Thumb
CFQS (Chinese First Quasi-Axisymmetric Stellarator)[85] Under construction 2017– Helias China Chengdu Southwest Jiaotong University, National Institute for Fusion Science in Japan 1 m/0.25 m 1 T m=2 quasi-axisymmetric stellarator, modular Thumb
EFPP (European Fusion Power Plant)[86] Planned 2030 ? 2045 ? Helias Germany Gauss Fusion 7–9 T ? Fusion power plant with 2–3 GW output
Close

Magnetic mirror

Toroidal Z-pinch

  • Perhapsatron (1953, USA)
  • ZETA (Zero Energy Thermonuclear Assembly) (1957, United Kingdom)

Reversed field pinch (RFP)

Spheromak

Field-reversed configuration (FRC)

Other toroidal machines

  • TMP (Tor s Magnitnym Polem, torus with magnetic field): A porcelain torus with major radius 80 cm, minor radius 13 cm, toroidal field of 1.5 T and plasma current 0.25 MA, predecessor to the first tokamak (1955, USSR)

Open field lines

Plasma pinch

Levitated dipole

Inertial confinement

Laser-driven

More information Device name, Status ...
Device nameStatusConstructionOperationDescriptionPeak laser powerPulse energyFusion yieldLocationOrganisationImage
4 pi laserShut down196?Semiconductor laser5 GW12 JUnited States LivermoreLLNL
Long path laserShut down19721972First ICF laser with neodymium doped glass (Nd:glass) as lasing medium5 GW50 JUnited States LivermoreLLNL
Single Beam System (SBS) "67"Shut down1971-19731973Single-beam CO2 laser[92]200 GW1 kJUnited States Los AlamosLANL
Double Bounce Illumination System (DBIS)Shut down1972-19741974-1990First private laser fusion effort, YAG laser, neutron yield 104 to 3×105 neutrons1 kJ100 nJUnited States Ann Arbor, MichiganKMS FusionThumb
MERLIN (Medium Energy Rod Laser Incorporating Neodymium), N78 laserShut down1972-19751975-?Nd:glass laser100 GW40 JUnited Kingdom RAF AldermastonAWEThumb
Cyclops laserShut down19751975Single-beam Nd:glass laser, prototype for Shiva[93]1 TW270 JUnited States LivermoreLLNLThumb
Janus laserShut down1974-19751975Two-beam Nd:glass laser demonstrated laser compression and thermonuclear burn of deuterium–tritium1 TW10 JUnited States LivermoreLLNLThumb
Gemini laser, Dual-Beam Module (DBM)Shut down≤ 19751976Two-beam CO2 laser, tests for Helios5 TW2.5 kJUnited States Los AlamosLANL
Argus laserShut down19761976-1981Two-beam Nd:glass laser, advanced the study of laser-target interaction and paved the way for Shiva4 TW2 kJ3 mJUnited States LivermoreLLNLThumb
Vulcan laser (Versicolor Ultima Lux Coherens pro Academica Nostra)[94]Operational1976-19771977-8-beam Nd:glass laser, highest-intensity focussed laser in the world in 2005[95]1 PW2.6 kJUnited Kingdom DidcotRALThumb
Shiva laserShut down19771977-198120-beam Nd:glass laser; proof-of-concept for Nova; fusion yield of 1011 neutrons; found that its infrared wavelength of 1062 nm was too long to achieve ignition30 TW10.2 kJ0.1 JUnited States LivermoreLLNLThumb
Helios laser, Eight-Beam System (EBS)Shut down1975-197819788-beam CO2 laser; Media at Wikimedia Commons20 TW10 kJUnited States Los AlamosLANLThumb
HELEN (High Energy Laser Embodying Neodymium)Shut down1976-19791979-2009Two-beam Nd:glass laser1 TW200 JUnited Kingdom DidcotRALThumb
ISKRA-4Operational-19791979-8-beam iodine gas laser, prototype for ISKRA-5[96]10 TW2 kJ6 mJSoviet Union SarovRFNC-VNIIEF
Sprite laser[94]Shut down1981-19831983-1995First high-power Krypton fluoride laser used for target irradiation, λ=249 nm1 TW7.5 JUnited Kingdom DidcotRALThumb
Gekko XIIOperational1983-12-beam, Nd:glass laser500 TW10 kJJapan OsakaInstitute for Laser Engineering
Novette laserShut down1981-19831983-1984Nd:glass laser to validate the Nova design, first X-ray laser[97]13 TW18 kJUnited StatesLivermoreLLNLThumb
Antares laser, High Energy Gas Laser Facility (HEGLF)Shut down1983[98]24-beam largest CO2 laser ever built. Missed goal of scientific fusion breakeven, because production of hot electrons in target plasma due to long 10.6 μm wavelength of laser resulted in poor laser/plasma energy coupling[97]200 TW40 kJUnited States Los AlamosLANL
PHAROS laserOperational198?Two-beam Nd:glass laser300 GW1 kJUnited States Washington D.C.NRL
Nova laserShut down1984-199910-beam NIR and frequency-tripled 351 nm UV laser; fusion yield of 1013 neutrons; attempted ignition, but failed due to fluid instability of targets; led to construction of NIF1.3 PW120 kJ30 JUnited StatesLivermoreLLNL
ISKRA-5Operational-198912-beam iodine gas laser, fusion yield 1010 to 1011 neutrons[96]100 TW30 kJ0.3 JSoviet Union SarovRFNC-VNIIEF
Aurora laserShut down≤ 1988-1989199096-beam Krypton fluoride laser300 GW1.3 kJUnited States Los AlamosLANL
Shenguang-IShut down 1990 2-beam Nd:glass laser, λ=1053 nm[99] 1.6 kJ 100 nJ[100]  China Joint Laboratory of High Power Laser and Physics
PALS, formerly "Asterix IV"Operational-19911991-Iodine gas laser, λ=1315 nm3 TW1 kJGermany Garching,
Czech Republic Prague
MPQ, CASThumb
Trident laserOperational198?-19921992-20173-beam Nd:glass laser; 2 x 400 J beams, 100 ps – 1 us; 1 beam ~100 J, 600 fs – 2 ns200 TW500 JUnited States Los AlamosLANLThumb
Nike laserOperational≤ 1991-19941994-56-beam, most-capable Krypton fluoride laser for laser target interactions[101][102]2.6 TW3 kJUnited States Washington, D.C.NRLThumb
OMEGA laserOperational ?-19951995-60-beam UV frequency-tripled Nd:glass laser, fusion yield 1014 neutrons60 TW40 kJ300 JUnited States RochesterLLE
ElectraOperationalKrypton fluoride laser, 5 Hz operation with 90,000+ shots continuous4 GW730 JUnited States Washington D.C.NRLThumb
LULI2000Operational ?2003-6-beam Nd:glass laser, λ=1.06 μm, λ=0.53 μm, λ=0.26 μm500 GW600 JFrance PalaiseauÉcole polytechnique
OMEGA EPOperational2008-60-beam UV1.4 PW5 kJUnited States RochesterLLE
National Ignition Facility (NIF)Operational1997-20092010-192-beam Nd:glass laser, achieved scientific breakeven with fusion gain of 1.5 and 1.2×1018 neutrons[103]500 TW2.05 MJ3.15 MJUnited States LivermoreLLNLThumb
OrionOperational2006-20102010-10-beams, λ=351 nm200 TW5 kJUnited Kingdom RAF AldermastonAWEThumb
Laser Mégajoule (LMJ)Operational1999-20142014-Second-largest laser fusion facility, 10 out of 22 beam lines operational in 2022[104]800 TW1 MJFrance BordeauxCEA
Laser for Fast Ignition Experiments (LFEX)Operational2003-20152015-High-contrast heating laser for FIREX, λ=1053 nm2 PW10 kJ100 μJJapan OsakaInstitute for Laser Engineering
HiPER (High Power Laser Energy Research Facility)Cancelled2007-2015-Pan-European project to demonstrate the technical and economic viability of laser fusion for the production of energy[105](4 PW)(270 kJ)(25 MJ)European UnionThumb
Laser Inertial Fusion Energy (LIFE)Cancelled2008-2013-Effort to develop a fusion power plant succeeding NIF(2.2 MJ)(40 MJ)United States LivermoreLLNLThumb
ISKRA-6Planned ? ?128 beam Nd:glass laser300 TW?300 kJ?Russia SarovRFNC-VNIIEF
Close

Z-pinch

Inertial electrostatic confinement

Magnetized target fusion

References

See also

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.