Top Qs
Timeline
Chat
Perspective

List of gravitational wave observations

List of gravitational wave detections From Wikipedia, the free encyclopedia

List of gravitational wave observations
Remove ads

This page contains a list of observed and candidate gravitational wave events.

Thumb
The first measurement of a gravitational wave event

Origin and nomenclature

Summarize
Perspective

Direct observation of gravitational waves, which commenced with the detection of an event by LIGO in 2015,[1] plays a key role in gravitational wave astronomy. LIGO has been involved in all subsequent detections to date, with Virgo joining in August 2017.[2]

Joint observation runs of LIGO and VIRGO, designated "O1, O2, etc." span many months, with months of maintenance and upgrades in-between designed to increase the instruments sensitivity and range. Within these run periods, the instruments are capable of detecting gravitational waves.

The first run, O1, ran from September 12, 2015, to January 19, 2016, and succeeded in its first gravitational wave detection. O2 ran for a greater duration, from November 30, 2016, to August 25, 2017.[3] O3 began on April 1, 2019, which was briefly suspended on September 30, 2019, for maintenance and upgrades, thus O3a. O3b marks resuming of the run and began on November 1, 2019. Due to the COVID-19 pandemic[4] O3 was forced to end prematurely.[5] O4 began on May 24, 2023; initially planned for March, the project needed more time to stabilize the instruments.

The O4 observing run, initially planned to end after one year, has been extended to run until 7 October 2025, following plans to make further upgrades for the O5 run.[2][6] Updated observing plans are published on the official website, containing the latest information on these runs.[6] There was a two month commissioning break from January to March 2024, and another from 1 April to a planned 4 June 2025, after which observations will resume for the remainder of O4.[7] As of May 2025, O5 is planned to begin in late 2027.

Gravitational wave events are named starting with the prefix GW, while observations that trigger an event alert but have not (yet) been confirmed are named starting with the prefix S.[8] Six digits then indicate the date of the event, with the two first digits representing the year, the two middle digits the month and two final digits the day of observation. This is similar to the systematic naming for other kinds of astronomical event observations, such as those of gamma-ray bursts.

Probable detections that are not confidently identified as gravitational wave events are designated LVT ("LIGO-Virgo trigger"). Known gravitational wave events come from the merger of two black holes (BH), two neutron stars (NS), or a black hole and a neutron star (BHNS).[9][10] Some objects are in the mass gap (MG) between the largest predicted neutron star masses (Tolman–Oppenheimer–Volkoff limit) and the smallest known black holes.

Remove ads

List of gravitational wave events

Summarize
Perspective
Confirmed events by distance
4
8
12
16
20
24
28
32
36
40
<100 Mpc
100-200 Mpc
200-500 Mpc
500-1000 Mpc
1-2 Gpc
2-5 Gpc
5+ Gpc
  •   BNS mergers
  •   NS-BH mergers
  •   mass gap
  •   BBH mergers
Initial objects by mass
5
10
15
20
25
30
35
40
45
50
1-2 M
2-3 M
3-5 M
5-10 M
10-20 M
20-30 M
30-40 M
40-50 M
50-60 M
60-70 M
70-80 M
80-90 M
90-100 M
100-110 M
  •   neutron star
  •   mass gap
  •   black hole
List of binary merger events[11][12]
More information GW event and time (UTC), Date published ...
Thumb
Gravitational Wave Transient Catalog 1. Credit:LIGO Scientific Collaboration and Virgo Collaboration/Georgia Tech/S. Ghonge & K. Jani
Remove ads

Candidate events and marginal detections

Summarize
Perspective

There is possible detection of nanohertz waves by observation of the timing of pulsars, but they have not been confirmed at the 5 sigma level of confidence, as of 2023.[59]

Marginal detections from O1 and O2

In addition to well-constrained detections listed above, a number of low-significance detections of possible signals were made by LIGO and Virgo. Their characteristics are listed below, only including detections with a <50% chance of being noise:

More information Candidate event, Detection time (UTC) ...

Observation candidates from O3/2019

From observation run O3/2019 on, observations are published as Open Public Alerts to facilitate multi-messenger observations of events.[63][64][65] Candidate event records can be directly accessed at the Gravitational-Wave Candidate Event Database (GraceDB).[66] On 1 April 2019, the start of the third observation run was announced with a circular published in the public alerts tracker.[67] The first O3/2019 binary black hole detection alert was broadcast on 8 April 2019. A significant percentage of O3 candidate events detected by LIGO are accompanied by corresponding triggers at Virgo.

False alarm rates are mixed, with more than half of events assigned false alarm rates greater than 1 per 20 years, contingent on presence of glitches around signal, foreground electromagnetic instability, seismic activity, and operational status of any one of the three LIGO-Virgo instruments. For instance, events S190421ar and S190425z weren't detected by Virgo and LIGO's Hanford site, respectively.

The LIGO/Virgo collaboration took a short break from observing during the month of October 2019 to improve performance and prepare for future plans, with no signals detected in that month as a result.[68]

The Kamioka Gravitational Wave Detector (KAGRA) in Japan became operational on 25 February 2020,[69] likely improving the detection and localization of future gravitational wave signals.[70] However, KAGRA does not report their signals in real-time on GraceDB as LIGO and Virgo do, so the results of their observation run will likely not be published until the end of O3.

The LIGO-Virgo collaboration ended the O3 run early on March 27, 2020, due to health concerns from the COVID-19 pandemic.[5][71]

Candidate detections from O3 by month
1
2
3
4
5
6
7
8
9
10
19/04
19/05
19/06
19/07
19/08
19/09
19/10
19/11
19/12
20/01
20/02
20/03
  •   BNS mergers
  •   NS-BH mergers
  •   mass gap
  •   BBH mergers
  •   terrestrial noise
  •   false positives
  •   unidentified
O3 detections by distance
2
4
6
8
10
12
14
16
18
20
<100 Mpc
100-200 Mpc
200-500 Mpc
500-1000 Mpc
1-2 Gpc
2-5 Gpc
5+ Gpc
  •   BNS mergers
  •   NS-BH mergers
  •   mass gap
  •   BBH mergers
List of unconfirmed O3 event alerts[11][12]
More information GW event, Detection time (UTC) ...

Observation candidates from O4/2023

On 15 June 2022, LIGO announced to start the O4 observing run in March 2023.[80] As the date got closer, engineering challenges delayed the observing run to May 2023.[81] An engineering run to assess the sensitivity of LIGO, Virgo, and KAGRA began in April, with the Hanford detector's first operations beginning on April 29,[82] and the Livingston and Virgo detectors' first operations beginning on May 5.[83]

On March 7, 2023, a gamma-ray burst compatible with a neutron star merger was detected by the Fermi telescope and named GRB 230307A. The burst, identified as being from a host galaxy approximately 296 Mpc away, would likely have only been marginally detected at best by LIGO if it had been operating at the time, as the detectors would only later achieve a sensitivity of 160 Mpc for neutron star mergers by O4's beginning, 3 months later.

Near the end of the engineering run on 15 May 2023, LIGO announced that O4 would be beginning on 24 May 2023, running for 20 months with up to 2 months of maintenance. The LIGO detectors initially failed to achieve the hoped for 160-190 Mpc sensitivity for neutron star mergers, but did achieve an improved 130-150 Mpc sensitivity over O3's 100-140 Mpc, later improving to nearly 160 Mpc for both detectors by late 2023. Virgo was found to have both a damaged mirror and other new, unknown noise sources, limiting its sensitivity to just 31-35 Mpc (similar to its performance during O2 in 2017, and lower than O3's 40-50 Mpc.) As a result, Virgo spent most of 2023 in commissioning, with a deadline of March 2024 to improve its sensitivity before joining O4. KAGRA achieved its planned 1 Mpc sensitivity before returning to commissioning in July, with plans to rejoin at an improved 10 Mpc sensitivity by early 2024. However, the Mw7.5 2024 Noto earthquake occurred on 1 January 2024 only 103 kilometres (64 mi) from KAGRA, damaging the detector's sensitive instruments and delaying its development by at least several months.

On 18 May 2023, near the end of the engineering run and shortly before O4 proper, the first candidate gravitational wave event was detected. Four more were detected before the official beginning of the run. In October, LIGO announced a planned pause between January and March 2024, for a mid-run commissioning break intended to reduce noise and improve the uptime of the detectors.

The O4b run began in April 2024 with the addition of the Virgo detector at a sensitivity of 55 Mpc. The Livingston detector achieved an increased sensitivity of 170-175 Mpc, while the Hanford detector maintained its pre-break sensitivity of 155-160 Mpc. Due to a variety of factors including delays in technologies required for O5, the decision was made in June 2024 to extend O4 by several months to June 2025, with O5 expected to begin in late 2027 or early 2028.

Candidate detections from O4 by month[n 23]
5
10
15
20
25
30
2305
06
07
08
09
10
11
12
2401
02
03
04
05
06
07
08
09
10
11
12
2501
02
03
04
05
  •   BNS mergers
  •   NS-BH mergers
  •   mass gap
  •   BBH mergers
  •   unidentified
O4 detections by distance[n 23]
15
30
45
60
75
90
105
120
135
150
<100 Mpc
100-200 Mpc
200-500 Mpc
500-1000 Mpc
1-2 Gpc
2-5 Gpc
5-10 Gpc
10+ Gpc
  •   BNS mergers
  •   NS-BH mergers
  •   mass gap
  •   BBH mergers
List of O4 event alerts
More information GW event, Detectiontime (UTC) ...
Remove ads

See also

  • GRB 150101B, a weak gamma-ray burst trigger observed prior to aLIGO O1 (beginning September 12, 2015), with claimed similarities to model-supported possible neutron star merger GW170817/GRB 170817A/AT2017gfo.

Notes

  1. The detection date of a GW event is indicated by its designation; i.e., event GW150914 was detected on 2015-09-14.
  2. The relatively large and distant area of the sky within which it is claimed to be possible to localize the source.
  3. 1 Mpc is approximately 3.26 Mly.
  4. c2M is about 1.8×103 foe; 1.8×1047 J; 1.8×1054 erg; 4.3×1046 cal; 1.7×1044 BTU; 5.0×1040 kWh, or 4.3×1037 tonnes of TNT.
  5. The chirp mass is the binary parameter most relevant to the evolution of the inspiral gravitational waveform, and thus is the mass that can be measured most accurately. It is related to, but less than, the geometric mean of the binary masses, according to , thus ranging from ~87% of when the masses are the same to ~78% when they differ by an order of magnitude.
  6. The dimensionless effective inspiral spin parameter is: [13] where is the mass of a black hole, is its spin, and is the angle between the orbital angular momentum and a merging black hole's spin (ranging from when aligned to when antialigned). It is the mass-weighted linear combination of the components of the black holes' spins aligned with the orbital axis[13][12] and has values ranging from −1 to 1 (the extremes correspond to situations with both black hole spins exactly antialigned and aligned, respectively, with orbital angular momentum).[14] This is the spin parameter most relevant to the evolution of the inspiral gravitational waveform, and it can be measured more accurately than those of the premerger BHs.[15]
  7. Values of the dimensionless spin parameter cJ/GM2 for a black hole range from zero to a maximum of one. The macroscopic properties of an isolated astrophysical (uncharged) black hole are fully determined by its mass and spin. Values for other objects can potentially exceed one. The largest value known for a neutron star is ≤ 0.4, and commonly used equations of state would limit that value to < 0.7.[16]
  8. Spin estimate is 0.26+0.52
    −0.24
    .[17]
  9. Spin estimate is 0.32+0.54
    −0.29
    .[17]
  10. Based on a descending spin-down GW-chirp lasting 3.7 seconds post-merger, a hyper-massive neutron star was produced in delayed gravitational collapse to a Kerr black hole after 0.92 seconds.[27] [28]
  11. Besides the loss of mass due to GW emission that occurred during the merger, the event is thought to have ejected 0.05±0.02 M of material.[29]
  12. 1 Mpc is approximately 3.26 Mly.
  13. Which instruments observed the event. (H = LIGO Hanford, L=LIGO Livingston, V=Virgo)
  14. The area of the sky within which it was possible to localize the source.
  15. 1 Mpc is approximately 3.26 Mly.
  16. Which instruments observed the event. (H = LIGO Hanford, L=LIGO Livingston, V=Virgo)
  17. The chance a random signal of this significance would occur at any point in O3's 11-month run. Calculated by 1 - (1-false alarm rate in Hz)28,512,000. This is not the chance of the given signal being 'real' or not: Background contamination (such as earthquakes) can cause statistically significant signals as well, and although four detections have a >50% chance to have occurred randomly in O3, there is only a 19.4% chance that none of these signals would be real.
  18. Probability that both components have mass < 3 M
  19. Probability that one component has mass < 3 M and the other has mass > 5 M
  20. Probability that both components have mass > 5 M
  21. Probability that at least one component has a mass in the range 3-5 M, between those of known neutron stars and black holes, a range sometimes identified as the "lower" mass gap
  22. Probability that the source is terrestrial or non-cosmological (e.g. foreground noises and signals [e.g. "noise"] or a technical/systematic error ["glitch"])
  23. The following events had a pAstro of over 50%, but were at a low significance and thus not validated by the LIGO-Virgo collaboration. Many of these events are likely real, but at least some are likely false positives:
    2023 May: S230524b (BBH, pAstro = 0.725), S230525a (BBH, pAstro = 0.724), S230527bv (BBH, pAstro = 0.882), S230528a (NSMG, pAstro = 0.643), S230528bt (BBH, pAstro = 0.880)
    June: S230604z (BBH, pAstro = 0.748), S230606z (BBH, pAstro = 0.835), S230609a (BBH, pAstro = 0.956), S230615av (BBH, pAstro = 0.912), S230615az (BNS, pAstro = 0.847), S230623at (BBH, pastro = 0.707), S230628aj (BBH, pAstro = 0.694)
    July: S230704bd (BBH, pAstro = 0.755), S230711b (BBH, pAstro = 0.792), S230716o (BBH, pAstro = 0.750), S230725am (BBH, pAstro = 0.502), S230728ap (BBH, pAstro = 0.940)
    August: S230822ac (BBH, pAstro = 0.813), S230830q (BBH, pAstro = 0.923)
    September: S230902af (BBH, pAstro = 0.798), S230904bg (BBH, pAstro = 0.688)
    October: S231004bq (BBH, pAstro = 0.708), S231007w (BBH, pAstro = 0.746), S231025a (BNS, pAstro = 0.588), S231025ap (BBH, pAstro = 0.830)
    November: S231124z (BBH, pAstro = 0.647)
    December: S231223bg (BBH, pAstro = 0.690)
    2024 January: S240116p (BBH, pAstro = 0.789)
    April: S240407v (BBH, pAstro = 0.882), S240420dc (BBH, pAstro = 0.887), S240427am (BBH, pAstro = 0.639)
    May: S240513cx (BBH, pAstro = 0.738), S240525dy (BBH, pAstro = 0.885), S240526ak (BBH, pAstro = 0.626), S240527dh (BBH, pAstro = 0.915), S240531aa (BBH, pAstro = 0.905)
    June: S240613z (BBH, pAstro = 0.923), S240619z (BBH, pAstro = 0.739), S240621ch (BBH, pAstro = 0.680), S240627co (BBH, pAstro = 0.713)
    July: S240701bn (BBH, pAstro = 0.824)
    September: S240901ew (BBH, pAstro = 0.881), S240907ah (BBH, pAstro = 0.910), S240913bs (BBH, pAstro = 0.875), S240914db (BBH, pAstro = 0.608), S240915aw (BBH, pAstro = 0.678), S240921s (BBH, pAstro = 0.736), S240921cs (BBH, pAstro = 0.702)
    October: S241031cn (BBH, pAstro = 0.583)
    November: S241101s (BBH, pAstro = 0.800), S241106ae (BBH, pAstro = 0.927), S241111u (BBH, pAstro = 0.703), S241115cn (BBH, pAstro = 0.626), S241124w (BBH, pAstro=0.913), S241128cf (BBH, pAstro=0.648)
    December: S241210ba (BBH, pAstro = 0.632)
    S241219gz (BBH, pAstro = 0.771)
    2025 January: S250103ei (BBH, pAstro = 0.697), S250105dn (BBH, pAstro = 0.753), S250120ah (BBH, pAstro = 0.901), S250123l (BBH, pAstro = 0.809), S250129p (BBH, pAstro = 0.798)
    February: S250204ar (BBH, pAstro = 0.779), S250207da (BBH, pAstro = 0.707), S250214bv (BBH, pAstro = 0.635), S250228p (BBH, pAstro = 0.798)
    March: S250304df (BBH, pAstro = 0.731), S250309co (BBH, pAstro = 0.665), S250313j (BBH, pAstro = 0.646), S250313aj (BBH, pAstro = 0.861), S250315ab (BBH, pAstro = 0.765), S250318bl (MGBH, pAstro = 0.584), S250321l (BBH, pAstro = 0.721), S250327u (BBH, pAstro = 0.635)
  24. The area of the sky within which it was possible to localize the source.
  25. 1 Mpc is approximately 3.26 Mly.
  26. Which instruments observed the event. (H = LIGO Hanford, L=LIGO Livingston, V=Virgo)
  27. The chance a random signal of this significance would occur at any point in O4's 20-month run. Calculated by 1 - (1-false alarm rate in Hz)57,456,000. This is not the chance of the given signal being 'real' or not: Even if there is a 90% chance of O4 having random noise eventually reach a certain level of significance, the chance of such noise occurring 100 separate times in the same period is still very low (in this example, around 0.0026%).
  28. Probability that both components have mass < 3 M
  29. Probability that one component has mass < 3 M and the other has mass > 5 M
  30. Probability that both components have mass > 5 M
  31. Probability that at least one component has a mass in the range 3-5 M, between those of known neutron stars and black holes, a range sometimes identified as the "lower" mass gap
  32. Probability that the source is terrestrial or non-cosmological (e.g. foreground noises and signals [e.g. "noise"] or a technical/systematic error ["glitch"])
Remove ads

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads