Trigonometric, inverse trigonometric, hyperbolic, and inverse hyperbolic functions relationship












(versine)
[1] (haversine)






Modified-factorial denominators
[2]
[2]
![{\displaystyle \sum _{n=0}^{\infty }{\frac {\prod _{k=0}^{n-1}(4k^{2}+\alpha ^{2})}{(2n)!}}z^{2n}+\sum _{n=0}^{\infty }{\frac {\alpha \prod _{k=0}^{n-1}[(2k+1)^{2}+\alpha ^{2}]}{(2n+1)!}}z^{2n+1}=e^{\alpha \arcsin {z}},|z|\leq 1}](//wikimedia.org/api/rest_v1/media/math/render/svg/7690094e2c29c30c517059014511d42f93f0912a)
Binomial coefficients
(see Binomial theorem § Newton's generalized binomial theorem)
- [3]

- [3]
, generating function of the Catalan numbers
- [3]
, generating function of the Central binomial coefficients
- [3]

Harmonic numbers
(See harmonic numbers, themselves defined
, and
generalized to the real numbers)

![{\displaystyle \sum _{k=1}^{\infty }{\frac {H_{k}}{k+1}}z^{k+1}={\frac {1}{2}}\left[\ln(1-z)\right]^{2},\qquad |z|<1}](//wikimedia.org/api/rest_v1/media/math/render/svg/a1c2c3f140738f0c5c61f88f041f311fbda3a340)
[2]
[2]
