Top Qs
Timeline
Chat
Perspective

Local language (formal language)

From Wikipedia, the free encyclopedia

Remove ads

In mathematics, a local language is a formal language for which membership of a word in the language can be determined by looking at the first and last symbol and each two-symbol substring of the word.[1] Equivalently, it is a language recognised by a local automaton, a particular kind of deterministic finite automaton.[2]

Formally, a language L over an alphabet A is defined to be local if there are subsets R and S of A and a subset F of A×A such that a word w is in L if and only if the first letter of w is in R, the last letter of w is in S and no factor of length 2 in w is in F.[3] This corresponds to the regular expression[1][4]

More generally, a k-testable language L is one for which membership of a word w in L depends only on the prefix and suffix of length k and the set of factors of w of length k;[5] a language is locally testable if it is k-testable for some k.[6] A local language is 2-testable.[1]

Remove ads

Examples

  • Over the alphabet {a,b,[,]}[4]

Properties

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads