Loading AI tools
From Wikipedia, the free encyclopedia
In mathematics, particularly topology, a topological space X is locally normal if intuitively it looks locally like a normal space.[1] More precisely, a locally normal space satisfies the property that each point of the space belongs to a neighbourhood of the space that is normal under the subspace topology.
Separation axioms in topological spaces | |
---|---|
Kolmogorov classification | |
T0 | (Kolmogorov) |
T1 | (Fréchet) |
T2 | (Hausdorff) |
T2½ | (Urysohn) |
completely T2 | (completely Hausdorff) |
T3 | (regular Hausdorff) |
T3½ | (Tychonoff) |
T4 | (normal Hausdorff) |
T5 | (completely normal Hausdorff) |
T6 | (perfectly normal Hausdorff) |
A topological space X is said to be locally normal if and only if each point, x, of X has a neighbourhood that is normal under the subspace topology.[2]
Note that not every neighbourhood of x has to be normal, but at least one neighbourhood of x has to be normal (under the subspace topology).
Note however, that if a space were called locally normal if and only if each point of the space belonged to a subset of the space that was normal under the subspace topology, then every topological space would be locally normal. This is because, the singleton {x} is vacuously normal and contains x. Therefore, the definition is more restrictive.
Čech, Eduard (1937). "On Bicompact Spaces". Annals of Mathematics. 38 (4): 823–844. doi:10.2307/1968839. ISSN 0003-486X. JSTOR 1968839.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.