Top Qs
Timeline
Chat
Perspective

Lode coordinates

From Wikipedia, the free encyclopedia

Lode coordinates
Remove ads

Lode coordinates or Haigh–Westergaard coordinates .[1] are a set of tensor invariants that span the space of real, symmetric, second-order, 3-dimensional tensors and are isomorphic with respect to principal stress space. This right-handed orthogonal coordinate system is named in honor of the German scientist Dr. Walter Lode because of his seminal paper written in 1926 describing the effect of the middle principal stress on metal plasticity.[2] Other examples of sets of tensor invariants are the set of principal stresses or the set of kinematic invariants . The Lode coordinate system can be described as a cylindrical coordinate system within principal stress space with a coincident origin and the z-axis parallel to the vector .

Thumb
Surfaces on which the invariants , , are constant. Plotted in principal stress space. The red plane represents a meridional plane and the yellow plane an octahedral plane.
Remove ads

Mechanics invariants

Summarize
Perspective

The Lode coordinates are most easily computed using the mechanics invariants. These invariants are a mixture of the invariants of the Cauchy stress tensor, , and the stress deviator, , and are given by[3]

which can be written equivalently in Einstein notation

where is the Levi-Civita symbol (or permutation symbol) and the last two forms for are equivalent because is symmetric ().

The gradients of these invariants[4] can be calculated by

where is the second-order identity tensor and is called the Hill tensor.

Remove ads

Axial coordinate ( z ) {\displaystyle (z)}

Summarize
Perspective

The -coordinate is found by calculating the magnitude of the orthogonal projection of the stress state onto the hydrostatic axis.

where

is the unit normal in the direction of the hydrostatic axis.

Remove ads

Radial coordinate ( r ) {\displaystyle (r)}

Summarize
Perspective

The -coordinate is found by calculating the magnitude of the stress deviator (the orthogonal projection of the stress state into the deviatoric plane).

where

More information The relation that ...

is a unit tensor in the direction of the radial component.

Remove ads

Lode angle – angular coordinate ( θ ) {\displaystyle (\theta )}

Summarize
Perspective
Thumb
This plot demonstrates that an intuitive approximation for the Lode angle is the relative position of the middle principal stress with respect to the low and high principal stresses.

The Lode angle can be considered, rather loosely, a measure of loading type. The Lode angle varies with respect to the middle eigenvalue of the stress. There are many definitions of Lode angle that each utilize different trigonometric functions: the positive sine,[5] negative sine,[6] and positive cosine[7] (here denoted , , and , respectively)

and are related by

More information The relation between ...

These definitions are all defined for a range of .

More information Stress State ...

The unit normal in the angular direction which completes the orthonormal basis can be calculated for [8] and [9] using

.
Remove ads

Meridional profile

Thumb
This plot shows a typical meridional profile of several plasticity models: von Mises, linear Drucker–Prager, Mohr–Coulomb, Gurson, and Bigoni–Piccolroaz. The upper portion of the plot depicts yield surface behavior in triaxial extension and the lower portion depicts yield surface behavior in triaxial compression.

The meridional profile is a 2D plot of holding constant and is sometimes plotted using scalar multiples of . It is commonly used to demonstrate the pressure dependence of a yield surface or the pressure-shear trajectory of a stress path. Because is non-negative the plot usually omits the negative portion of the -axis, but can be included to illustrate effects at opposing Lode angles (usually triaxial extension and triaxial compression).

One of the benefits of plotting the meridional profile with is that it is a geometrically accurate depiction of the yield surface.[8] If a non-isomorphic pair is used for the meridional profile then the normal to the yield surface will not appear normal in the meridional profile. Any pair of coordinates that differ from by constant multiples of equal absolute value are also isomorphic with respect to principal stress space. As an example, pressure and the Von Mises stress are not an isomorphic coordinate pair and, therefore, distort the yield surface because

and, finally, .

Remove ads

Octahedral profile

Summarize
Perspective
Thumb
This plot shows a typical octahedral profile of several plasticity models: von Mises, linear Drucker–Prager, Mohr–Coulomb, Gurson, and Bigoni–Piccolroaz. This plot has omitted Lode angle values in favor of loading descriptions because of the preponderance of definitions of the Lode angle. The radial coordinate is .

The octahedral profile is a 2D plot of holding constant. Plotting the yield surface in the octahedral plane demonstrates the level of Lode angle dependence. The octahedral plane is sometimes referred to as the 'pi plane'[10] or 'deviatoric plane'.[11]

The octahedral profile is not necessarily constant for different values of pressure with the notable exceptions of the von Mises yield criterion and the Tresca yield criterion which are constant for all values of pressure.

Remove ads

A note on terminology

The term Haigh-Westergaard space is ambiguously used in the literature to mean both the Cartesian principal stress space[12][13] and the cylindrical Lode coordinate space[14][15]

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads