MRB constant
Mathematical constant described by Marvin Ray Burns From Wikipedia, the free encyclopedia
The MRB constant is a mathematical constant, with decimal expansion 0.187859… (sequence A037077 in the OEIS). The constant is named after its discoverer, Marvin Ray Burns, who published his discovery of the constant in 1999.[1] Burns had initially called the constant "rc" for root constant[2] but, at Simon Plouffe's suggestion, the constant was renamed the 'Marvin Ray Burns's Constant', or "MRB constant".[3]

The MRB constant is defined as the upper limit of the partial sums[4][5][6][7][8][9][10]
As grows to infinity, the sums have upper and lower limit points of −0.812140… and 0.187859…, separated by an interval of length 1. The constant can also be explicitly defined by the following infinite sums:[4]
The constant relates to the divergent series:
There is no known closed-form expression of the MRB constant,[11] nor is it known whether the MRB constant is algebraic, transcendental or even irrational.
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.