Top Qs
Timeline
Chat
Perspective
Manganin
From Wikipedia, the free encyclopedia
Remove ads
Manganin is a trademarked name for an alloy of typically 84.2% copper, 12.1% manganese, and 3.7% nickel. It was first developed by Edward Weston in 1892, improving upon his Constantan (1887).
Manganin foil and wire is used in the manufacture of resistors, particularly ammeter shunts, because of its virtually zero temperature coefficient of resistance value[2] and long term stability. Several Manganin resistors served as the legal standard for the ohm in the United States from 1901 to 1990.[3] Manganin wire is also used as an electrical conductor in cryogenic systems, minimizing heat transfer between points which need electrical connections.
Manganin is also used in gauges for studies of high-pressure shock waves (such as those generated from the detonation of explosives) because it has low strain sensitivity but high hydrostatic pressure sensitivity.[4]
Remove ads
History
![]() | This section needs expansion. You can help by adding to it. (January 2011) |
In 1887 Edward Weston discovered that metals can have a negative temperature coefficient of resistance, inventing what he called his "Alloy No. 2." It was produced in Germany where it was renamed "Constantan".[5] In 1888 he patented[6] "an alloy containing from 65 to 70 parts of copper, 25 to 30 parts of ferro-manganese, and 2.5 to 10 parts of nickel" which had a nearly constant resistivity.
Manganin wire as we know it was developed by Weston's assistant John Forrest Kelly.[7] In May 1893, Weston received a patent[citation needed] for the material and its use for resistors. While Manganin represented a significant advance in technology -- the material was a conductive metal with constant resistance over a wide range of working temperatures, Weston did not receive wide recognition at the time.[8]
Remove ads
Properties
Cu86/Mn12/Ni2
![]() | This article may be in need of reorganization to comply with Wikipedia's layout guidelines. (November 2012) |
Electrical Properties
- Temperature coefficient: 1.5×10−5 K−1
Mechanical Properties
- Modulus of elasticity: 124–159 GPa
- Maximum use temperature in air: 300 °C
Remove ads
See also
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads