Top Qs
Timeline
Chat
Perspective

Marcel Berger

French mathematician (1927-2016) From Wikipedia, the free encyclopedia

Marcel Berger
Remove ads

Marcel Berger (14 April 1927 – 15 October 2016) was a French mathematician, doyen of French differential geometry, and a former director of the Institut des Hautes Études Scientifiques (IHÉS), France.

Quick Facts Born, Died ...
Remove ads

Biography

After studying from 1948 to 1951 at the École normale supérieure in Paris, Berger obtained in 1954 his PhD from the University of Paris, with thesis written under the direction of André Lichnerowicz.[1] From 1958 to 1964 he taught at the University of Strasbourg and had visiting positions at the Massachusetts Institute of Technology and the University of California, Berkeley. From 1964 to 1966 he taught at the University of Nice, after which he joined the University of Paris VII. From 1985 to 1993 he served as director of the IHÉS.

Formerly residing in Le Castera in Lasseube, Berger was instrumental in Mikhail Gromov's accepting positions both at the University of Paris and at the IHÉS.[2]

Remove ads

Awards and honors

Selected publications

  • Berger, Marcel: Sur les groupes d'holonomie homogène des variétés à connexion affine et des variétés riemanniennes. (French) Bull. Soc. Math. France 83 (1955), 279–330.
  • Berger, Marcel: Les espaces symétriques noncompacts. (French) Ann. Sci. École Norm. Sup. (3) 74 1957 85–177.
  • Berger, M.: Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive. (French) Ann. Scuola Norm. Sup. Pisa (3) 15 1961 179–246.
  • Berger, Marcel; Gauduchon, Paul; Mazet, Edmond: Le spectre d'une variété riemannienne. (French) Lecture Notes in Mathematics, Vol. 194 Springer-Verlag, Berlin-New York 1971.
  • Besse, A. L. (1978). Manifolds all of whose Geodesics are Closed. Berlin Heidelberg: Springer-Verlag. ISBN 978-3-540-08158-6.
  • Berger, Marcel; Gostiaux, Bernard (1988). Differential Geometry: manifolds, curves, and surfaces. Graduate Texts in Mathematics. Translated by Levy, Silvio. New York: Springer. ISBN 978-0-387-96626-7.
  • Berger, Marcel: Systoles et applications selon Gromov. (French) [Systoles and their applications according to Gromov] Séminaire Bourbaki, Vol. 1992/93. Astérisque No. 216 (1993), Exp. No. 771, 5, 279–310.
  • Berger, Marcel: Riemannian geometry during the second half of the twentieth century. Reprint of the 1998 original. University Lecture Series, 17. American Mathematical Society, Providence, Rhode Island, 2000. x+182 pp. ISBN 0-8218-2052-4
  • Berger, Marcel (Feb 2000). "Encounter with a Geometer, Part I" (PDF). Notices of the AMS. 47 (2): 183–194.
  • Berger, Marcel (Mar 2000). "Encounter with a Geometer, Part II" (PDF). Notices of the AMS. 47 (3): 326–340.
  • Berger, Marcel (2003). A Panoramic View of Riemannian Geometry. Springer-Verlag. ISBN 3-540-65317-1. [5][6]
  • Besse, Arthur L. (2007). Einstein Manifolds. Berlin Heidelberg: Springer-Verlag. ISBN 978-3-540-74120-6.
  • Berger, M.: What is... a Systole? Notices of the AMS 55 (2008), no. 3, 374–376. online text
  • Berger, Marcel (2009). Geometry I. Universitext. Translated by Cole, M.; Levy, S. Berlin; New York: Springer-Verlag. ISBN 978-3-540-11658-5.
  • Berger, Marcel (2009). Geometry II. Universitext. Translated by Cole, M.; Levy, S. Berlin; New York: Springer-Verlag. ISBN 978-3-540-17015-0.
  • Berger, Marcel (2010). Geometry Revealed. Heidelberg; New York: Springer. ISBN 978-3-540-70996-1. OCLC 280446977.
Remove ads

See also

References

Further reading

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads