Mass-spring-damper model
Concept in physics From Wikipedia, the free encyclopedia
The mass-spring-damper model consists of discrete mass nodes distributed throughout an object and interconnected via a network of springs and dampers.

This form of model is also well-suited for modelling objects with complex material behavior such as those with nonlinearity or viscoelasticity.
As well as engineering simulation, these systems have applications in computer graphics and computer animation.[1]
Derivation (Single Mass)
Summarize
Perspective
Deriving the equations of motion for this model is usually done by summing the forces on the mass (including any applied external forces :
By rearranging this equation, we can derive the standard form:
- where
is the undamped natural frequency and is the damping ratio. The homogeneous equation for the mass spring system is:
This has the solution:
If then is negative, meaning the square root will be imaginary and therefore the solution will have an oscillatory component.[2]
See also
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.