Maximum inner-product search

Search problem From Wikipedia, the free encyclopedia

Maximum inner-product search (MIPS) is a search problem, with a corresponding class of search algorithms which attempt to maximise the inner product between a query and the data items to be retrieved. MIPS algorithms are used in a wide variety of big data applications, including recommendation algorithms and machine learning.[1]

Formally, for a database of vectors defined over a set of labels in an inner product space with an inner product defined on it, MIPS search can be defined as the problem of determining

for a given query .

Although there is an obvious linear-time implementation, it is generally too slow to be used on practical problems. However, efficient algorithms exist to speed up MIPS search.[1][2]

Under the assumption of all vectors in the set having constant norm, MIPS can be viewed as equivalent to a nearest neighbor search (NNS) problem in which maximizing the inner product is equivalent to minimizing the corresponding distance metric in the NNS problem.[3] Like other forms of NNS, MIPS algorithms may be approximate or exact.[4]

MIPS search is used as part of DeepMind's RETRO algorithm.[5]

References

See also

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.