Top Qs
Timeline
Chat
Perspective

Monkey saddle

Mathematical surface defined by z = x³ – 3xy² From Wikipedia, the free encyclopedia

Monkey saddle
Remove ads
Remove ads

In mathematics, the monkey saddle is the surface defined by the equation

Thumb
The monkey saddle

or in cylindrical coordinates

It belongs to the class of saddle surfaces, and its name derives from the observation that a saddle used by a monkey would require two depressions for its legs and one for its tail. The point on the monkey saddle corresponds to a degenerate critical point of the function at . The monkey saddle has an isolated umbilical point with zero Gaussian curvature at the origin, while the curvature is strictly negative at all other points.

One can relate the rectangular and cylindrical equations using complex numbers

By replacing 3 in the cylindrical equation with any integer one can create a saddle with depressions. [1]

Another orientation of the monkey saddle is the Smelt petal defined by so that the z-axis of the monkey saddle corresponds to the direction in the Smelt petal.[2][3]

Another function, which has not three but four areas - in each quadrant of the , in which the function goes to minus infinity, is given by .

Thumb
Smelt petal: x + y + z + xyz = 0
Remove ads

Horse saddle

The term horse saddle may be used in contrast to monkey saddle, to designate an ordinary saddle surface in which z(x,y) has a saddle point, a local minimum or maximum in every direction of the xy-plane. In contrast, the monkey saddle has a stationary point of inflection in every direction.

References

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads