Protein | Example species | EC number | CAS number | Alternate oligomers | Evidence |
Acetyl-CoA carboxylase-1 | Gallus domesticus | EC 6.4.1.2 | 9023-93-2 | inactive dimer, active dimer, larger[21] | Effector molecules impact multimerization,[22] Multiple/protein moonlighting functions[21] |
α-Acetylgalactosaminidase | Bos taurus | EC 4.3.2.2 | 9027-81-0 | inactive monomer, active tetramer[23] | Substrate binding/turnover impacts multimerization,[23] Protein concentration dependent specific activity,[24] Different assemblies have different activities,[24] Conformationally distinct oligomeric forms.[23][24] |
Adenylosuccinate lyase | Bacillus subtilis | EC 4.3.2.2 | 9027-81-0 | monomer, dimer, trimer, tetramer[25] | Mutations shift the equilibrium of oligomers,[26] Oligomer-dependent kinetic parameters,[26] Protein concentration dependent molecular weight[26] |
Aristolochene synthase | Penicillium roqueforti | EC 4.2.3.9 | 94185-89-4 | monomer, higher order[27] | Protein concentration dependent specific activity[28] |
L-Asparaginase | Leptosphaeria michotii | EC 3.5.1.1 | 9015-68-3 | dimer, tetramer, inactive octamer[29] | Substrate binding/turnover impacts multimerization[30] |
Aspartokinase | Escherichia coli | EC 2.7.2.4 & EC 1.1.1.3 | 9012-50-4 | monomer, dimer, tetramer[31][32] | Multiple/protein moonlighting functions,[33] Conformationally distinct oligomeric forms[32] |
ATPase of the ABCA1 transporter | Homo sapiens | | | dimer, tetramer[34] | Substrate binding/turnover impacts multimerization[34] |
Biotin—(acetyl-CoA-carboxylase) ligase holoenzyme synthetase | Escherichia coli | EC 6.3.4.15 | 37340-95-7 | monomer, dimer[35] | Multiple/protein moonlighting functions,[35] Different assemblies have different activities[36] |
Chorismate mutase | Escherichia coli | EC 5.4.99.5 | 9068-30-8 | dimer, trimer, hexamer | Conformationally distinct oligomeric forms[37] |
Citrate synthase | Escherichia coli | EC 2.3.3.1 | 9027-96-7 | monomer, dimer, trimer, tetramer, pentamer, hexamer, dodecamer[38] | Substrate binding/turnover impacts multimerization,[38] Characterized equilibrium of oligomers,[38] Protein concentration dependent specific activity,[38] pH-dependent oligomeric equilibrium[38] |
Cyanovirin-N | Nostoc ellipsosporum | | 918555-82-5 | monomer and domain-swapped dimer[39][40] | Characterized equilibrium of oligomers,[41][42] Conformationally distinct oligomeric forms[41][42] |
3-oxoacid CoA-transferase | Sus scrofa domestica | EC 2.8.3.5 | 9027-43-4 | dimer, tetramer[43] | Chromatographically separable oligomers,[43] Substrate might preferentially stabilize one form[43] |
Cystathionine β-synthase | Homo sapiens | EC 4.2.1.22 | 9023-99-8 | multiple - ranges from dimer to 16-mer[44] | Effector molecules impact multimerization,[45] Mutations shift the equilibrium of oligomers,[46] Different assemblies have different activities,[45] disease-causing mutations at sites distant from active site[47] |
D-amino acid oxidase | | EC 1.4.3.3 | 9000-88-8 | monomers, dimers, higher-order oligomers[48][49] | Oligomer-dependent kinetic parameters[48][49] |
Dihydrolipoamide dehydrogenase | Sus scrofa domestica | EC 1.8.1.4 | 9001-18-7 | monomer, two different dimer forms, tetramer[50] | Multiple/protein moonlighting functions,[50] Different assemblies have different activities,[50] pH-dependent oligomeric equilibrium,[50] Conformationally distinct oligomeric forms[51][52][53] |
Dopamine β-monooxygenase | Bos taurus | EC 1.14.17.1 | 9013-38-1 | dimers, tetramers[54][55][56] | Effector molecules impact multimerization,[54][55][56] Characterized equilibrium of oligomers,[54][55][56] Oligomer-dependent kinetic parameters[54][55][56] |
Geranylgeranyl pyrophosphate synthase / Farnesyltranstransferase | Homo sapiens | EC 2.5.1.29 | 9032-58-0 | hexamer, octamer[57][58][59] | Effector molecules impact multimerization[58] |
GDP-mannose 6-dehydrogenase | Pseudomonas aeruginosa | EC 1.1.1.132 | 37250-63-8 | trimer, 2 tetramers, and hexamer[60][61] | Protein concentration dependent specific activity,[62] Kinetic hysteresis[62] |
Glutamate dehydrogenase | Bos taurus | EC 1.4.1.2 | 9001-46-1 | active & inactive hexamers, higher order[63] | Effector molecules impact multimerization,[64] Characterized equilibrium of oligomers[63] |
Glutamate racemase | Mycobacterium tuberculosis, Escherichia coli, Bacillus subtilis, Aquifex pyrophilus | EC 5.1.1.3 | 9024-08-02 | monomer, 2 dimers, tetramer[65][66][67][68][69] | Multiple/protein moonlighting functions,[70][71][72] Characterized equilibrium of oligomers,[68][69] Conformationally distinct oligomeric forms[65][66][67] |
Glyceraldehyde-3-phosphate dehydrogenase | Oryctolagus cuniculas, Sus scrofa domestica | EC 1.2.1.12 1.2.1.12 | 9001-50-7 | monomer, dimer, tetramer[73] Characterized equilibrium of oligomers,[74] Different assemblies have different activities[75] |
Glycerol kinase | Escherichia coli | EC 2.7.1.30 | 9030-66-4 | monomer and 2 tetramers[76][77][78] | Characterized equilibrium of oligomers,[76][77][78][79] Conformationally distinct oligomeric forms,[79][80] Effector functions by preventing domain motion[80] |
HIV-Integrase | Human immunodeficiency virus-1 | EC 2.7.7.- | | monomer, dimer, tetramer, higher order[81][82][83] | Effector molecules impact multimerization,[84] Multiple/protein moonlighting functions,[81][82][83] Different assemblies have different activities[83][84] |
HPr-Kinase/phosphatase | Bacillus subtilis, Lactobacillus casei, Mycoplasma pneumoniae, Staphylococcus xylosus | EC 2.7.1.-/ EC 3.1.3.- | 9026-43-1 | monomers, dimers, trimers, hexamers[85][86][87][88][89][90] | Effector molecules impact multimerization,[89] Multiple/protein moonlighting functions,[89] Different assemblies have different activities,[89] pH-dependent oligomeric equilibrium[89] |
Lactate dehydrogenase | Bacillus stearothermophilus | EC 1.1.1.27 | 9001-60-9 | 2 dimers, tetramer[91][92] | Effector molecules impact multimerization,[92] Characterized equilibrium of oligomers,[92] Protein concentration dependent specific activity,[92] Mutations shift the equilibrium of oligomers,[93] Oligomer-dependent kinetic parameters,[92] Conformationally distinct oligomeric forms[94] |
Lon protease | Escherichia coli, Mycobacterium smegmatis | EC 3.4.21.53 | 79818-35-2 | monomer, dimer, trimer, tetramer[95][96] | Effector molecules impact multimerization,[95][96] Substrate binding/turnover impacts multimerization,[95][96] Protein concentration dependent specific activity,[97] Kinetic hysteresis[97] |
Mitochondrial NAD(P)+ Malic enzyme / [[malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+)]] | Homo sapiens | EC 1.1.1.40 | 9028-47-1 | monomer, 2 dimers, tetramer[98][99] | Effector molecules impact multimerization,[98] Mutations shift the equilibrium of oligomers,[100] Kinetic hysteresis,[99] |
Peroxiredoxins | Salmonella typhimurium | EC 1.6.4.- & EC 1.11.1.15 | 207137-51-7 | 2 dimers, decamer | Conformationally distinct oligomeric forms,[101] Different assemblies have different activities[102] |
Phenylalanine hydroxylase | Homo sapiens | EC 1.14.16.1 | 9029-73-6 | high activity tetramer, low activity tetramer[103] | Substrate binding/turnover impacts multimerization,[104][105] Conformationally distinct oligomeric forms[106][107] |
Phosphoenolpyruvate carboxylase | Escherichia coli, Zea mays | EC | 9067-77-0 | inactive dimer, active tetramer[108] | Effector molecules impact multimerization, Characterized equilibrium of oligomers,[108] Kinetic hysteresis,[108] Conformationally distinct oligomeric forms[109] |
Phosphofructokinase | Bacillus stearothermophilus, Thermus thermophilus | EC 2.7.1.11 | 9001-80-3 | inactive dimer, active tetramer[108][110] | Effector molecules impact multimerization,[108][110] Characterized equilibrium of oligomers[108][110] |
Polyphenol oxidase | Agaricus bisporus, Malus domestica, Lactuca sativa L. | EC 1.10.3.1 | 9002-10-2 | monomer, trimer, tetramer, octamer, dodecamer[111][112] | Multiple/protein moonlighting functions,[113] Substrate binding/turnover impacts multimerization,[114] Different assemblies have different activities,[115] Kinetic hysteresis[114] |
Porphobilinogen synthase | Drosophila melanogaster, Danio rerio | EC 4.2.1.24 | 9036-37-7 | dimer, hexamer, octamer[116][117] | PBGS is the prototype morpheein.[116] |
Pyruvate kinase | Homo sapiens | EC 2.7.1.40 | 9001-59-6 | active and inactive dimers, active tetramer, monomer, trimer, pentamer[118][119] | Conformationally distinct oligomeric forms[118][119] |
Ribonuclease A | Bos taurus | EC 3.1.27.5 3.1.27.5 | 9901-99-4 | monomer, dimer, trimer, tetramer, hexamer, pentamer, higher order[120][121][122][123][124] | Multiple/protein moonlighting functions,[125][126][127] Different assemblies have different activities,[125][126][127] Conformationally distinct oligomeric forms[121][123][124] |
Ribonucleotide reductase | Mus musculus | EC 1.17.4.1 | 9047-64-7 | tetramer, hexamer[128][129][130][131] | Effector molecules impact multimerization[131] |
S-adenosyl-L-homocysteine hydrolase | Dictyostelium discoideum | EC 3.3.1.1 | 9025-54-1 | tetramer and other[132][133][134] | Effector molecules impact multimerization[132] |
Biodegrative threonine dehydratase / threonine ammonia-lyase | Escherichia coli | EC 4.3.1.19 4.3.1.19 | 774231-81-1 | 2 monomers, 2 tetramers[135][136][137] | Effector molecules impact multimerization,[137] Characterized equilibrium of oligomers,[135][136] Different assemblies have different activities[135][136][137] |
β-Tryptase | Homo sapiens | EC 3.4.21.59 | 97501-93-4 | active and inactive monomers, active and inactive tetramers[138][139][140][141][142][143][144][145][146][147] | Protein concentration dependent specific activity,[148] Characterized equilibrium of oligomers[148] |
Tumor necrosis factor-α | Homo sapiens | | 94948-61-5 | monomer, dimer, trimer[149][150] | Different assemblies have different activities[151] |
Uracil phosphoribosyltransferase | Escherichia coli | EC 2.4.2.9 | 9030-24-4 | trimer, pentamer[152] | Effector molecules impact multimerization,[152] Substrate binding/turnover impacts multimerization,[152] Different assemblies have different activities[152] |