Top Qs
Timeline
Chat
Perspective

Nil-Coxeter algebra

From Wikipedia, the free encyclopedia

Remove ads

In mathematics, the nil-Coxeter algebra, introduced by Fomin & Stanley (1994), is an algebra similar to the group algebra of a Coxeter group except that the generators are nilpotent.

Definition

Summarize
Perspective

The nil-Coxeter algebra for the infinite symmetric group is the algebra generated by u1, u2, u3, ... with the relations

These are just the relations for the infinite braid group, together with the relations u2
i
 = 0. Similarly one can define a nil-Coxeter algebra for any Coxeter system, by adding the relations u2
i
 = 0 to the relations of the corresponding generalized braid group.

Remove ads

References

  • Fomin, Sergey; Stanley, Richard P. (1994), "Schubert polynomials and the nil-Coxeter algebra", Advances in Mathematics, 103 (2): 196–207, doi:10.1006/aima.1994.1009, ISSN 0001-8708, MR 1265793
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads