Top Qs
Timeline
Chat
Perspective
Nil-Coxeter algebra
From Wikipedia, the free encyclopedia
Remove ads
In mathematics, the nil-Coxeter algebra, introduced by Fomin & Stanley (1994), is an algebra similar to the group algebra of a Coxeter group except that the generators are nilpotent.
Definition
Summarize
Perspective
The nil-Coxeter algebra for the infinite symmetric group is the algebra generated by u1, u2, u3, ... with the relations
These are just the relations for the infinite braid group, together with the relations u2
i = 0. Similarly one can define a nil-Coxeter algebra for any Coxeter system, by adding the relations u2
i = 0 to the relations of the corresponding generalized braid group.
Remove ads
References
- Fomin, Sergey; Stanley, Richard P. (1994), "Schubert polynomials and the nil-Coxeter algebra", Advances in Mathematics, 103 (2): 196–207, doi:10.1006/aima.1994.1009, ISSN 0001-8708, MR 1265793
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads