Noncontracting grammar

From Wikipedia, the free encyclopedia

In formal language theory, a grammar is noncontracting (or monotonic) if for all of its production rules, α  β (where α and β are strings of nonterminal and terminal symbols), it holds that |α| ≤ |β|, that is β has at least as many symbols as α. A grammar is essentially noncontracting if there may be one exception, namely, a rule S → ε where S is the start symbol and ε the empty string, and furthermore, S never occurs in the right-hand side of any rule.

A context-sensitive grammar is a noncontracting grammar in which all rules are of the form αAβ  αγβ, where A is a nonterminal, and γ is a nonempty string of nonterminal and/or terminal symbols.

However, some authors use the term context-sensitive grammar to refer to noncontracting grammars in general.[1]

A noncontracting grammar in which |α| < |β| for all rules is called a growing context-sensitive grammar.

History

Chomsky (1959) introduced the Chomsky hierarchy, in which context-sensitive grammars occur as "type 1" grammars; general noncontracting grammars do not occur.[2]

Chomsky (1963) calls a noncontracting grammar a "type 1 grammar", and a context-sensitive grammar a "type 2 grammar", and by presenting a conversion from the former into the latter, proves the two weakly equivalent .[3]

Kuroda (1964) introduced Kuroda normal form, into which all noncontracting grammars can be converted.[4]

Example

Sabc
SaSBc
cBBc
bBbb

This grammar, with the start symbol S, generates the language { anbncn : n ≥ 1 },[5] which is not context-free due to the pumping lemma.

A context-sensitive grammar for the same language is shown below.

Expressive power

Summarize
Perspective

Every context-sensitive grammar is a noncontracting grammar.

There are easy procedures for

Hence, these three types of grammar are equal in expressive power, all describing exactly the context-sensitive languages that do not include the empty string; the essentially noncontracting grammars describe exactly the set of context-sensitive languages.

A direct conversion

A direct conversion into context-sensitive grammars, avoiding Kuroda normal form:

For an arbitrary noncontracting grammar (N, Σ, P, S), construct the context-sensitive grammar (N’, Σ, P’, S) as follows:

  1. For every terminal symbol a ∈ Σ, introduce a new nonterminal symbol [a] ∈ N’, and a new rule ([a] → a) ∈ P’.
  2. In the rules of P, replace every terminal symbol a by its corresponding nonterminal symbol [a]. As a result, all these rules are of the form X1...XmY1...Yn for nonterminals Xi, Yj and mn.
  3. Replace each rule X1...XmY1...Yn with m>1 by 2m rules:[note 1]
X1X2...Xm-1 XmZ1X2...Xm-1 Xm
Z1X2...Xm-1 XmZ1Z2...Xm-1 Xm
 :
Z1Z2...Xm-1 XmZ1Z2...Zm-1 Xm
Z1Z2...Zm-1 XmZ1Z2...Zm-1 ZmYm+1...Yn
Z1Z2...Zm-1 ZmYm+1...Yn           Y1Z2...Zm-1 ZmYm+1...Yn
Y1Z2...Zm-1 ZmYm+1...YnY1Y2...Zm-1 ZmYm+1...Yn
 :
Y1Y2...Zm-1 ZmYm+1...YnY1Y2...Ym-1 ZmYm+1...Yn
Y1Y2...Ym-1 ZmYm+1...YnY1Y2...Ym-1 YmYm+1...Yn
where each ZiN’ is a new nonterminal not occurring elsewhere.[7][8]

For example, the above noncontracting grammar for { anbncn | n ≥ 1 } leads to the following context-sensitive grammar (with start symbol S) for the same language:

[a]afrom step 1
[b]bfrom step 1
[c]cfrom step 1
S[a][b][c]from step 2, unchanged
S[a]SB[c]      from step 2, unchanged
[c]BB[c]from step 2, further modified below
[c]BZ1Bmodified from above in step 3
Z1BZ1Z2modified from above in step 3
Z1Z2           BZ2modified from above in step 3
BZ2B[c]modified from above in step 3
[b]B[b][b]from step 2, further modified below
[b]BZ3Bmodified from above in step 3
Z3BZ3Z4modified from above in step 3
Z3Z4[b]Z4modified from above in step 3
[b]Z4[b][b]modified from above in step 3

See also

Notes

  1. For convenience, the non-context part of left and right hand side is shown in boldface.

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.