Top Qs
Timeline
Chat
Perspective
Nvidia Tesla
Nvidia's line of general purpose GPUs From Wikipedia, the free encyclopedia
Remove ads
Nvidia Tesla is the former name for a line of products developed by Nvidia targeted at stream processing or general-purpose graphics processing units (GPGPU), named after pioneering electrical engineer Nikola Tesla. Its products began using GPUs from the G80 series, and have continued to accompany the release of new chips. They are programmable using the CUDA or OpenCL APIs.
Remove ads
The Nvidia Tesla product line competed with AMD's Radeon Instinct and Intel Xeon Phi lines of deep learning and GPU cards.
Nvidia retired the Tesla brand in May 2020, reportedly because of potential confusion with the brand of cars.[1] Its new GPUs are branded Nvidia Data Center GPUs[2] as in the Ampere-based A100 GPU.[3]
Nvidia DGX servers feature Nvidia GPGPUs.
Remove ads
Overview
Offering computational power much greater than traditional microprocessors, the Tesla products targeted the high-performance computing market.[4] As of 2012[update], Nvidia Teslas power some of the world's fastest supercomputers, including Summit at Oak Ridge National Laboratory and Tianhe-1A, in Tianjin, China.
Tesla cards have four times the double precision performance of a Fermi-based Nvidia GeForce card of similar single precision performance.[citation needed] Unlike Nvidia's consumer GeForce cards and professional Nvidia Quadro cards, Tesla cards were originally unable to output images to a display. However, the last Tesla C-class products included one Dual-Link DVI port.[5]
Remove ads
Applications
Tesla products are primarily used in simulations and in large-scale calculations (especially floating-point calculations), and for high-end image generation for professional and scientific fields.[6]
In 2013, the defense industry accounted for less than one-sixth of Tesla sales, but Sumit Gupta predicted increasing sales to the geospatial intelligence market.[7]
Specifications
Notes
- To calculate the processing power see Tesla (microarchitecture)#Performance, Fermi (microarchitecture)#Performance, Kepler (microarchitecture)#Performance, Maxwell (microarchitecture)#Performance, or Pascal (microarchitecture)#Performance. A number range specifies the minimum and maximum processing power at, respectively, the base clock and maximum boost clock.
- Core architecture version according to the CUDA programming guide.
- GPU Boost is a default feature that increases the core clock rate while remaining under the card's predetermined power budget. Multiple boost clocks are available, but this table lists the highest clock supported by each card.[8]
- Specifications not specified by Nvidia assumed to be based on the GeForce 8800 GTX
- Specifications not specified by Nvidia assumed to be based on the GeForce GTX 280
Remove ads
See also
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads