Top Qs
Timeline
Chat
Perspective
Omnigeneity
A concept in stellarator physics From Wikipedia, the free encyclopedia
Remove ads
Omnigeneity (sometimes also called omnigenity) is a property of a magnetic field inside a magnetic confinement fusion reactor. Such a magnetic field is called omnigenous if the path a single particle takes does not drift radially inwards or outwards on average.[1] A particle is then confined to stay on a flux surface. All tokamaks are exactly omnigenous by virtue of their axisymmetry,[2] and conversely an unoptimized stellarator is generally not omnigenous.

Because an exactly omnigenous reactor has no neoclassical transport (in the collisionless limit),[3] stellarators are usually optimized in a way such that this criterion is met. One way to achieve this is by making the magnetic field quasi-symmetric,[4] and the Helically Symmetric eXperiment takes this approach. One can also achieve this property without quasi-symmetry, and Wendelstein 7-X is an example of a device which is close to omnigeneity without being quasi-symmetric.[5]
Remove ads
Theory
The drifting of particles across flux surfaces is generally only a problem for trapped particles, which are trapped in a magnetic mirror. Untrapped (or passing) particles, which can circulate freely around the flux surface, are automatically confined to stay on a flux surface.[6] For trapped particles, omnigeneity relates closely to the second adiabatic invariant (often called the parallel or longitudinal invariant).
One can show that the radial drift a particle experiences after one full bounce motion is simply related to a derivative of ,[7]where is the charge of the particle, is the magnetic field line label, and is the total radial drift expressed as a difference in toroidal flux.[8] With this relation, omnigeneity can be expressed as the criterion that the second adiabatic invariant should be the same for all the magnetic field lines on a flux surface,This criterion is exactly met in axisymmetric systems, as the derivative with respect to can be expressed as a derivative with respect to the toroidal angle (under which the system is invariant).
Remove ads
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads