Top Qs
Timeline
Chat
Perspective

Orlicz space

Type of function space From Wikipedia, the free encyclopedia

Remove ads

In mathematics, and especially in harmonic analysis and functional analysis, an Orlicz space is a type of function space which generalizes Lp spaces. Like spaces, they are Banach spaces. The spaces are named for Władysław Orlicz, who was the first to define them in 1932.

Besides spaces, a variety of function spaces arising naturally in analysis are Orlicz spaces. One such space is , which arises in the study of Hardy–Littlewood maximal functions, consisting of measurable functions such that

Here is the positive part of the logarithm. Also included in the class of Orlicz spaces are many of the most important Sobolev spaces. In addition, the Orlicz sequence spaces are examples of Orlicz spaces.

Remove ads

Terminology

These spaces are called Orlicz spaces because Władysław Orlicz was the first who introduced them, in 1932.[1] Some mathematicians, including Wojbor Woyczyński, Edwin Hewitt and Vladimir Mazya, include the name of Zygmunt Birnbaum as well, referring to his earlier joint work with Władysław Orlicz. However in the Birnbaum–Orlicz paper the Orlicz space is not introduced, neither explicitly nor implicitly, hence the name Orlicz space is preferred. By the same reasons this convention has been also openly criticized by another mathematician (and an expert in the history of Orlicz spaces), Lech Maligranda.[2] Orlicz was confirmed as the person who introduced Orlicz spaces already by Stefan Banach in his 1932 monograph.[3]

Remove ads

Definition

Summarize
Perspective

Let be a σ-finite measure on a set , and a Young function; i.e., a convex, lower semicontinuous, and non-trivial function. Non-trivial in the sense that it is neither the zero function nor the convex dual of the zero function

Now let be the set of measurable functions such that the integral

is finite, where, as usual, functions that agree almost everywhere are identified.

This is not necessarily a vector space (for example, it might fail to be closed under scalar multiplication). The Orlicz space, denoted , is the vector space of functions spanned by ; that is, the smallest linear space containing . Formally,

There is another Orlicz space, the small Orlicz space, defined by

In other words, it is the largest linear space contained in .

Norm

To define a norm on , let be the complementary Young function to ; i.e.,

Note that Young's inequality for products holds:

The norm is then given by

Furthermore, the space is precisely the space of measurable functions for which this norm is finite.

An equivalent norm,[4]:§3.3 called the Luxemburg norm, is defined on by

and likewise is the space of all measurable functions for which this norm is finite.

The two norms are equivalent in the sense that for all measurable .[5]

Note that by the monotone convergence theorem, if , then

.
Remove ads

Examples

For any , space is an Orlicz space with Orlicz function . Here

When , the small and the large Orlicz spaces for are equal: .

For an example where is not a vector space, and is strictly smaller than , let be the open unit interval , , and . Then is in the space for all but is only in if .

Remove ads

Properties

Summarize
Perspective

Proposition. The Orlicz norm is a norm.

Proof. Since for some , we have a.e.. That is obvious by definition. For triangular inequality, we have:Theorem. The Orlicz space is a Banach space a complete normed vector space.

Theorem.[5] are topological dual Banach spaces.

In particular, if , then are topological dual spaces. In particular, are dual Banach spaces when and .

Remove ads

Relations to Sobolev spaces

Summarize
Perspective

Certain Sobolev spaces are embedded in Orlicz spaces: for and open and bounded with Lipschitz boundary , we have

for

This is the analytical content of the Trudinger inequality: For open and bounded with Lipschitz boundary , consider the space with and . Then there exist constants such that

Remove ads

Orlicz norm of a random variable

Summarize
Perspective

Similarly, the Orlicz norm of a random variable characterizes it as follows:

This norm is homogeneous and is defined only when this set is non-empty.

When , this coincides with the p-th moment of the random variable. Other special cases in the exponential family are taken with respect to the functions (for ). A random variable with finite norm is said to be "sub-Gaussian" and a random variable with finite norm is said to be "sub-exponential". Indeed, the boundedness of the norm characterizes the limiting behavior of the probability distribution function:

so that the tail of the probability distribution function is bounded above by .

The norm may be easily computed from a strictly monotonic moment-generating function. For example, the moment-generating function of a chi-squared random variable X with K degrees of freedom is , so that the reciprocal of the norm is related to the functional inverse of the moment-generating function:

Remove ads

References

Further reading

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads