Top Qs
Timeline
Chat
Perspective

Oxygen rebound mechanism

Catalytic pathway From Wikipedia, the free encyclopedia

Oxygen rebound mechanism
Remove ads

In biochemistry, the oxygen rebound mechanism is the pathway for hydroxylation of organic compounds by iron-containing oxygenases. Many enzymes effect the hydroxylation of hydrocarbons as a means for biosynthesis, detoxification, gene regulation, and other functions. These enzymes often utilize Fe-O centers that convert C-H bonds into C-OH groups. The oxygen rebound mechanism starts with abstraction of H from the hydrocarbon, giving an organic radical and an iron hydroxide. In the rebound step, the organic radical attacks the Fe-OH center to give an alcohol group, which is bound to Fe as a ligand. Dissociation of the alcohol from the metal allows the cycle to start anew. This mechanistic scenario is an alternative to the direct insertion of an O center into a C-H bond. The pathway is an example of C-H activation.[1][2]

Thumb
Steps in an oxygen rebound mechanism: H-atom abstraction, oxygen rebound, alcohol decomplexation. The formal charge on the porphyrin changes from 1- to the more usual 2-.

Three main classes of these enzymes are cytochrome P450, alpha-ketoglutarate-dependent hydroxylases, and nonheme-diiron hydroxylases.

Remove ads

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads