Pairing
Bilinear map in mathematics From Wikipedia, the free encyclopedia
Bilinear map in mathematics From Wikipedia, the free encyclopedia
In mathematics, a pairing is an R-bilinear map from the Cartesian product of two R-modules, where the underlying ring R is commutative.
Let R be a commutative ring with unit, and let M, N and L be R-modules.
A pairing is any R-bilinear map . That is, it satisfies
for any and any and any . Equivalently, a pairing is an R-linear map
where denotes the tensor product of M and N.
A pairing can also be considered as an R-linear map , which matches the first definition by setting .
A pairing is called perfect if the above map is an isomorphism of R-modules.
A pairing is called non-degenerate on the right if for the above map we have that for all implies ; similarly, is called non-degenerate on the left if for all implies .
A pairing is called alternating if and for all m. In particular, this implies , while bilinearity shows . Thus, for an alternating pairing, .
Any scalar product on a real vector space V is a pairing (set M = N = V, R = R in the above definitions).
The determinant map (2 × 2 matrices over k) → k can be seen as a pairing .
The Hopf map written as is an example of a pairing. For instance, Hardie et al.[1] present an explicit construction of the map using poset models.
In cryptography, often the following specialized definition is used:[2]
Let be additive groups and a multiplicative group, all of prime order . Let be generators of and respectively.
A pairing is a map:
for which the following holds:
Note that it is also common in cryptographic literature for all groups to be written in multiplicative notation.
In cases when , the pairing is called symmetric. As is cyclic, the map will be commutative; that is, for any , we have . This is because for a generator , there exist integers , such that and . Therefore .
The Weil pairing is an important concept in elliptic curve cryptography; e.g., it may be used to attack certain elliptic curves (see MOV attack). It and other pairings have been used to develop identity-based encryption schemes.
Scalar products on complex vector spaces are sometimes called pairings, although they are not bilinear. For example, in representation theory, one has a scalar product on the characters of complex representations of a finite group which is frequently called character pairing.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.