Top Qs
Timeline
Chat
Perspective
Pisano period
Period of the Fibonacci sequence modulo an integer From Wikipedia, the free encyclopedia
Remove ads
In number theory, the nth Pisano period, written as π(n), is the period with which the sequence of Fibonacci numbers taken modulo n repeats. Pisano periods are named after Leonardo Pisano, better known as Fibonacci. The existence of periodic functions in Fibonacci numbers was noted by Joseph Louis Lagrange in 1774.[1][2]

Definition
Summarize
Perspective
The Fibonacci numbers are the numbers in the integer sequence:
- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, ... (sequence A000045 in the OEIS)
defined by the recurrence relation
For any integer n, the sequence of Fibonacci numbers Fi taken modulo n is periodic. The Pisano period, denoted π(n), is the length of the period of this sequence. For example, the sequence of Fibonacci numbers modulo 3 begins:
- 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, 2, 2, 1, 0, ... (sequence A082115 in the OEIS)
This sequence has period 8, so π(3) = 8.

Remove ads
Properties
Summarize
Perspective
Parity
With the exception of π(2) = 3, the Pisano period π(n) is always even.
This follows by observing that π(n) is equal to the order of the Fibonacci matrix
in the general linear group of invertible 2 by 2 matrices in the finite ring of integers modulo n. Since Q has determinant −1, the determinant of Qπ(n) is (−1)π(n), which is equal to 1 when either n ≤ 2 or π(n) is even.[3]
Pisano periods of composite numbers
If m and n are coprime, then π(mn) is the least common multiple of π(m) and π(n). This follows from Chinese remainder theorem.
Thus the Pisano periods of composite numbers can be computed by looking at the Pisano periods prime powers q = pk, for k ≥ 1.
If p is prime, π(pk) divides pk–1 π(p). It is unknown if for every prime p and integer k > 1. Any prime p providing a counterexample would necessarily be a Wall–Sun–Sun prime, and conversely every Wall–Sun–Sun prime p gives a counterexample (set k = 2).
For p = 2 and 5, the exact values of the Pisano periods are known. The periods of powers of these prime powers are as follows:
- If n = 2k, then
- if n = 5k, then
From these it follows that if n = 2 · 5k then π(n) = 6n.
Pisano periods of prime numbers


If prime p is different from 2 and 5, then π(p) is a divisor of p2 − 1. This follows from the modulo p analogue of Binet's formula, which implies that π(p) is the multiplicative order of a root of x2 − x − 1 modulo p.
Every p other than 2 and 5 lie in the residue classes or .
- If , then π(p) divides p − 1.
- If , then π(p) divides 2(p + 1).
The former can be proven by observing that if , then the roots of x2 − x − 1 modulo p belong to (by quadratic reciprocity). Thus their order, π(p) is a divisor of p − 1.
To prove the latter, if the roots modulo p of x2 − x − 1 do not belong to (by quadratic reciprocity again), and belong to the finite field As the Frobenius automorphism exchanges these roots, it follows that, denoting them by r and s, we have r p = s, and thus r p+1 = –1. That is r 2(p+1) = 1, and the Pisano period, which is the order of r, is the quotient of 2(p + 1) by an odd divisor.
It follows from above results, that if n = pk is an odd prime power such that π(n) > n, then π(n)/4 is an integer that is not greater than n. The multiplicative property of Pisano periods imply thus that
- π(n) ≤ 6n, with equality if and only if n = 2 · 5r, for r ≥ 1.[4]
If n is not of the form 2 · 5r, then π(n) ≤ 4n.
Remove ads
Tables
Summarize
Perspective
The first twelve Pisano periods (sequence A001175 in the OEIS) and their cycles (with spaces before the zeros for readability) are[5] (using X and E for ten and eleven, respectively):
The first 144 Pisano periods are shown in the following table:
Pisano periods of Fibonacci numbers
Summarize
Perspective
If n = F(2k) (k ≥ 2), then π(n) = 4k; if n = F(2k + 1) (k ≥ 2), then π(n) = 8k + 4. That is, if the modulo base is a Fibonacci number (≥ 3) with an even index, the period is twice the index and the cycle has two zeros. If the base is a Fibonacci number (≥ 5) with an odd index, the period is four times the index and the cycle has four zeros.
Remove ads
Pisano periods of Lucas numbers
Summarize
Perspective
If n = L(2k) (k ≥ 1), then π(n) = 8k; if n = L(2k + 1) (k ≥ 1), then π(n) = 4k + 2. That is, if the modulo base is a Lucas number (≥ 3) with an even index, the period is four times the index. If the base is a Lucas number (≥ 4) with an odd index, the period is twice the index.
For even k, the cycle has two zeros. For odd k, the cycle has only one zero, and the second half of the cycle, which is of course equal to the part on the left of 0, consists of alternatingly numbers F(2m + 1) and n − F(2m), with m decreasing.
Remove ads
Number of zeros in the cycle
Summarize
Perspective
This section needs additional citations for verification. (August 2018) |
The number of occurrences of 0 per cycle is 1, 2, or 4. Let p be the number after the first 0 after the combination 0, 1. Let the distance between the 0s be q.
- There is one 0 in a cycle, obviously, if p = 1. This is only possible if q is even or n is 1 or 2.
- Otherwise there are two 0s in a cycle if p2 ≡ 1. This is only possible if q is even.
- Otherwise there are four 0s in a cycle. This is the case if q is odd and n is not 1 or 2.
For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4.
The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n. That is, smallest index k such that n divides F(k). They are:
- 1, 3, 4, 6, 5, 12, 8, 6, 12, 15, 10, 12, 7, 24, 20, 12, 9, 12, 18, 30, 8, 30, 24, 12, 25, 21, 36, 24, 14, 60, 30, 24, 20, 9, 40, 12, 19, 18, 28, 30, 20, 24, 44, 30, 60, 24, 16, 12, ... (sequence A001177 in the OEIS)
In Renault's paper the number of zeros is called the "order" of F mod m, denoted , and the "rank of apparition" is called the "rank" and denoted .[6]
According to Wall's conjecture, . If has prime factorization then .[6]
Remove ads
Generalizations
Summarize
Perspective
The Pisano periods of Lucas numbers are
- 1, 3, 8, 6, 4, 24, 16, 12, 24, 12, 10, 24, 28, 48, 8, 24, 36, 24, 18, 12, 16, 30, 48, 24, 20, 84, 72, 48, 14, 24, 30, 48, 40, 36, 16, 24, 76, 18, 56, 12, 40, 48, 88, 30, 24, 48, 32, ... (sequence A106291 in the OEIS)
The Pisano periods of Pell numbers (or 2-Fibonacci numbers) are
- 1, 2, 8, 4, 12, 8, 6, 8, 24, 12, 24, 8, 28, 6, 24, 16, 16, 24, 40, 12, 24, 24, 22, 8, 60, 28, 72, 12, 20, 24, 30, 32, 24, 16, 12, 24, 76, 40, 56, 24, 10, 24, 88, 24, 24, 22, 46, 16, ... (sequence A175181 in the OEIS)
The Pisano periods of 3-Fibonacci numbers are
- 1, 3, 2, 6, 12, 6, 16, 12, 6, 12, 8, 6, 52, 48, 12, 24, 16, 6, 40, 12, 16, 24, 22, 12, 60, 156, 18, 48, 28, 12, 64, 48, 8, 48, 48, 6, 76, 120, 52, 12, 28, 48, 42, 24, 12, 66, 96, 24, ... (sequence A175182 in the OEIS)
The Pisano periods of Jacobsthal numbers (or (1,2)-Fibonacci numbers) are
- 1, 1, 6, 2, 4, 6, 6, 2, 18, 4, 10, 6, 12, 6, 12, 2, 8, 18, 18, 4, 6, 10, 22, 6, 20, 12, 54, 6, 28, 12, 10, 2, 30, 8, 12, 18, 36, 18, 12, 4, 20, 6, 14, 10, 36, 22, 46, 6, ... (sequence A175286 in the OEIS)
The Pisano periods of (1,3)-Fibonacci numbers are
- 1, 3, 1, 6, 24, 3, 24, 6, 3, 24, 120, 6, 156, 24, 24, 12, 16, 3, 90, 24, 24, 120, 22, 6, 120, 156, 9, 24, 28, 24, 240, 24, 120, 48, 24, 6, 171, 90, 156, 24, 336, 24, 42, 120, 24, 66, 736, 12, ... (sequence A175291 in the OEIS)
The Pisano periods of Tribonacci numbers (or 3-step Fibonacci numbers) are
- 1, 4, 13, 8, 31, 52, 48, 16, 39, 124, 110, 104, 168, 48, 403, 32, 96, 156, 360, 248, 624, 220, 553, 208, 155, 168, 117, 48, 140, 1612, 331, 64, 1430, 96, 1488, 312, 469, 360, 2184, 496, 560, 624, 308, 440, 1209, 2212, 46, 416, ... (sequence A046738 in the OEIS)
The Pisano periods of Tetranacci numbers (or 4-step Fibonacci numbers) are
- 1, 5, 26, 10, 312, 130, 342, 20, 78, 1560, 120, 130, 84, 1710, 312, 40, 4912, 390, 6858, 1560, 4446, 120, 12166, 260, 1560, 420, 234, 1710, 280, 1560, 61568, 80, 1560, 24560, 17784, 390, 1368, 34290, 1092, 1560, 240, 22230, 162800, 120, 312, 60830, 103822, 520, ... (sequence A106295 in the OEIS)
See also generalizations of Fibonacci numbers.
Remove ads
Number theory
Summarize
Perspective
Pisano periods can be analyzed using algebraic number theory.
Let be the n-th Pisano period of the k-Fibonacci sequence Fk(n) (k can be any natural number, these sequences are defined as Fk(0) = 0, Fk(1) = 1, and for any natural number n > 1, Fk(n) = kFk(n−1) + Fk(n−2)). If m and n are coprime, then , by the Chinese remainder theorem: two numbers are congruent modulo mn if and only if they are congruent modulo m and modulo n, assuming these latter are coprime. For example, and so Thus it suffices to compute Pisano periods for prime powers (Usually, , unless p is k-Wall–Sun–Sun prime, or k-Fibonacci–Wieferich prime, that is, p2 divides Fk(p − 1) or Fk(p + 1), where Fk is the k-Fibonacci sequence, for example, 241 is a 3-Wall–Sun–Sun prime, since 2412 divides F3(242).)
For prime numbers p, these can be analyzed by using Binet's formula:
- where is the kth metallic mean
If k2 + 4 is a quadratic residue modulo p (where p > 2 and p does not divide k2 + 4), then and can be expressed as integers modulo p, and thus Binet's formula can be expressed over integers modulo p, and thus the Pisano period divides the totient , since any power (such as ) has period dividing as this is the order of the group of units modulo p.
For k = 1, this first occurs for p = 11, where 42 = 16 ≡ 5 (mod 11) and 2 · 6 = 12 ≡ 1 (mod 11) and 4 · 3 = 12 ≡ 1 (mod 11) so 4 = √5, 6 = 1/2 and 1/√5 = 3, yielding φ = (1 + 4) · 6 = 30 ≡ 8 (mod 11) and the congruence
Another example, which shows that the period can properly divide p − 1, is π1(29) = 14.
If k2 + 4 is not a quadratic residue modulo p, then Binet's formula is instead defined over the quadratic extension field , which has p2 elements and whose group of units thus has order p2 − 1, and thus the Pisano period divides p2 − 1. For example, for p = 3 one has π1(3) = 8 which equals 32 − 1 = 8; for p = 7, one has π1(7) = 16, which properly divides 72 − 1 = 48.
This analysis fails for p = 2 and p is a divisor of the squarefree part of k2 + 4, since in these cases are zero divisors, so one must be careful in interpreting 1/2 or . For p = 2, k2 + 4 is congruent to 1 mod 2 (for k odd), but the Pisano period is not p − 1 = 1, but rather 3 (in fact, this is also 3 for even k). For p divides the squarefree part of k2 + 4, the Pisano period is πk(k2 + 4) = p2 − p = p(p − 1), which does not divide p − 1 or p2 − 1.
Remove ads
Fibonacci integer sequences modulo n
Summarize
Perspective
One can consider Fibonacci integer sequences and take them modulo n, or put differently, consider Fibonacci sequences in the ring Z/nZ. The period is a divisor of π(n). The number of occurrences of 0 per cycle is 0, 1, 2, or 4. If n is not a prime the cycles include those that are multiples of the cycles for the divisors. For example, for n = 10 the extra cycles include those for n = 2 multiplied by 5, and for n = 5 multiplied by 2.
Table of the extra cycles: (the original Fibonacci cycles are excluded) (using X and E for ten and eleven, respectively)
Number of Fibonacci integer cycles mod n are:
Notes
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads