Assume
(the case
is easier). Then

Since

this leaves

Ordinary generating functions
It is also possible to demonstrate the theorem through the use of ordinary generating functions of the binomial distribution:
![{\displaystyle G_{\operatorname {bin} }(x;p,N)\equiv \sum _{k=0}^{N}\left[{\binom {N}{k}}p^{k}(1-p)^{N-k}\right]x^{k}={\Big [}1+(x-1)p{\Big ]}^{N}}](//wikimedia.org/api/rest_v1/media/math/render/svg/84f0051a42e4b4e3ad464aa8519f814360e3697c)
by virtue of the binomial theorem. Taking the limit
while keeping the product
constant, it can be seen:
![{\displaystyle \lim _{N\rightarrow \infty }G_{\operatorname {bin} }(x;p,N)=\lim _{N\rightarrow \infty }\left[1+{\frac {\lambda (x-1)}{N}}\right]^{N}=\mathrm {e} ^{\lambda (x-1)}=\sum _{k=0}^{\infty }\left[{\frac {\mathrm {e} ^{-\lambda }\lambda ^{k}}{k!}}\right]x^{k}}](//wikimedia.org/api/rest_v1/media/math/render/svg/20230fc7a78091820f40495f377f27f4e36bb848)
which is the OGF for the Poisson distribution. (The second equality holds due to the definition of the exponential function.)