Polynomial decomposition

Factorization under function composition From Wikipedia, the free encyclopedia

In mathematics, a polynomial decomposition expresses a polynomial f as the functional composition of polynomials g and h, where g and h have degree greater than 1; it is an algebraic functional decomposition. Algorithms are known for decomposing univariate polynomials in polynomial time.

Polynomials which are decomposable in this way are composite polynomials; those which are not are indecomposable polynomials or sometimes prime polynomials[1] (not to be confused with irreducible polynomials, which cannot be factored into products of polynomials). The degree of a composite polynomial is always a composite number, the product of the degrees of the composed polynomials.

The rest of this article discusses only univariate polynomials; algorithms also exist for multivariate polynomials of arbitrary degree.[2]

Examples

Summarize
Perspective

In the simplest case, one of the polynomials is a monomial. For example,

decomposes into

since

using the ring operator symbol to denote function composition.

Less trivially,

Uniqueness

A polynomial may have distinct decompositions into indecomposable polynomials where where for some . The restriction in the definition to polynomials of degree greater than one excludes the infinitely many decompositions possible with linear polynomials.

Joseph Ritt proved that , and the degrees of the components are the same, but possibly in different order; this is Ritt's polynomial decomposition theorem.[1][3] For example, .

Applications

Summarize
Perspective

A polynomial decomposition may enable more efficient evaluation of a polynomial. For example,

can be calculated with 3 multiplications and 3 additions using the decomposition, while Horner's method would require 7 multiplications and 8 additions.

A polynomial decomposition enables calculation of symbolic roots using radicals, even for some irreducible polynomials. This technique is used in many computer algebra systems.[4] For example, using the decomposition

the roots of this irreducible polynomial can be calculated as[5]

Even in the case of quartic polynomials, where there is an explicit formula for the roots, solving using the decomposition often gives a simpler form. For example, the decomposition

gives the roots[5]

but straightforward application of the quartic formula gives equivalent results but in a form that is difficult to simplify and difficult to understand; one of the four roots is:

Algorithms

The first algorithm for polynomial decomposition was published in 1985,[6] though it had been discovered in 1976,[7] and implemented in the Macsyma/Maxima computer algebra system.[8] That algorithm takes exponential time in worst case, but works independently of the characteristic of the underlying field.

A 1989 algorithm runs in polynomial time but with restrictions on the characteristic.[9]

A 2014 algorithm calculates a decomposition in polynomial time and without restrictions on the characteristic.[10]

Notes

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.