Top Qs
Timeline
Chat
Perspective

Prismatoid

Polyhedron with all vertices in two parallel planes From Wikipedia, the free encyclopedia

Prismatoid
Remove ads

In geometry, a prismatoid is a polyhedron whose vertices all lie in two parallel planes. Its lateral faces can be trapezoids or triangles.[1] If both planes have the same number of vertices, and the lateral faces are either parallelograms or trapezoids, it is called a prismoid.[2]

Thumb
Prismatoid with parallel faces A1 and A3, midway cross-section A2, and height h

Volume

If the areas of the two parallel faces are A1 and A3, the cross-sectional area of the intersection of the prismatoid with a plane midway between the two parallel faces is A2, and the height (the distance between the two parallel faces) is h, then the volume of the prismatoid is given by[3] This formula follows immediately by integrating the area parallel to the two planes of vertices by Simpson's rule, since that rule is exact for integration of polynomials of degree up to 3, and in this case the area is at most a quadratic function in the height.

Remove ads

Prismatoid families

More information Pyramids, Wedges ...

Families of prismatoids include:

Remove ads

Higher dimensions

Thumb
A tetrahedral-cuboctahedral cupola.

In general, a polytope is prismatoidal if its vertices exist in two hyperplanes. For example, in four dimensions, two polyhedra can be placed in two parallel 3-spaces, and connected with polyhedral sides.

References

Loading content...
Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads