Top Qs
Timeline
Chat
Perspective
Product category
Product of two categories, in category theory From Wikipedia, the free encyclopedia
Remove ads
In the mathematical field of category theory, the product of two categories C and D, denoted C × D and called a product category, is an extension of the concept of the Cartesian product of two sets. Product categories are used to define bifunctors and multifunctors.[1]
Definition
The product category C × D has:
- as objects:
- pairs of objects (A, B), where A is an object of C and B of D;
- as arrows from (A1, B1) to (A2, B2):
- pairs of arrows (f, g), where f : A1 → A2 is an arrow of C and g : B1 → B2 is an arrow of D;
- as composition, component-wise composition from the contributing categories:
- (f2, g2) o (f1, g1) = (f2 o f1, g2 o g1);
- as identities, pairs of identities from the contributing categories:
- 1(A, B) = (1A, 1B).
Remove ads
Relation to other categorical concepts
For small categories, this is the same as the action on objects of the categorical product in the category Cat. A functor whose domain is a product category is known as a bifunctor. An important example is the Hom functor, which has the product of the opposite of some category with the original category as domain:
- Hom : Cop × C → Set.
Generalization to several arguments
Just as the binary Cartesian product is readily generalized to an n-ary Cartesian product, binary product of two categories can be generalized, completely analogously, to a product of n categories. The product operation on categories is commutative and associative, up to isomorphism, and so this generalization brings nothing new from a theoretical point of view.
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads