Top Qs
Timeline
Chat
Perspective
Projectionless C*-algebra
From Wikipedia, the free encyclopedia
Remove ads
In mathematics, a projectionless C*-algebra is a C*-algebra with no nontrivial projections. For a unital C*-algebra, the projections 0 and 1 are trivial. While for a non-unital C*-algebra, only 0 is considered trivial. The problem of whether simple infinite-dimensional C*-algebras with this property exist was posed in 1958 by Irving Kaplansky,[1] and the first example of one was published in 1981 by Bruce Blackadar.[1][2] For commutative C*-algebras, being projectionless is equivalent to its spectrum being connected. Due to this, being projectionless can be considered as a noncommutative analogue of a connected space.
Remove ads
Examples
- C, the algebra of complex numbers.
- The reduced group C*-algebra of the free group on finitely many generators.[3]
- The Jiang-Su algebra is simple, projectionless, and KK-equivalent to C.[4]
Dimension drop algebras
Let be the class consisting of the C*-algebras for each , and let be the class of all C*-algebras of the form
,
where are integers, and where belong to .
Every C*-algebra A in is projectionless, moreover, its only projection is 0. [5]
Remove ads
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads